

Copyright cba 2017 Nicholas J. Macias

Licensed under the Creative Commons Share-alike - Attri-

bution 4.0 License. You are free to use/modify/redistribute

this work without charge, provided you follow the license

terms. See

https://creativecommons.org/licenses/by-sa/4.0/legalcode

for more details.

Typeset using the Legrand Orange Book LATEXTemplate

Version 2.2 (30/3/17), downloaded from

http://www.LaTeXTemplates.com.

Original template author:

Mathias Legrand (legrand.mathias@gmail.com) with modi-

fications by: Vel (vel@latextemplates.com). License: CC

BY-NC-SA 3.0

(http://creativecommons.org/licenses/by-nc-sa/3.0/)

First printing, September 2017

https://creativecommons.org/licenses/by-sa/4.0/legalcode
http://www.LaTeXTemplates.com
http://creativecommons.org/licenses/by-nc-sa/3.0/

Preface

This book is, in many ways, a continuation of work that

was begun in the 1980s by Jimmy Hargrove, Larry Henry,

Murali Raju and myself. In the midst of conversations

about artificial intelligence, data flow machines, microcode

and architecture tuning, self-awareness, the halting prob-

lem, and a variety of other topics, an idea emerged for a

new type of computational building block: a reconfigurable,

self-configurable platform named the PIG (“Processing In-

tegrated Grid”).

In 1999, the first patent on the PIG was issued. Later

that year, the PIG was renamed to the Cell Matrix, and Cell

Matrix Corporation was founded by Lisa Durbeck and Nick

Macias.

Over the next 3 decades, research and development on

self-configurable systems led to a variety of work in self-

repair, autonomous self-assembly, introspective computing,

embryonic electronics, and other bio-inspired methodolo-

gies. Some of this work led to the development of an analog,

continuous-valued version of the Cell Matrix, called the

“Songline Processor.” Throughout all this work, a set of

core ideas emerged, and eventully, the Cell Matrix and the

Songline Processor felt less like the end of the journey, and

more like steps along a much longer path.

In 2016, EEXIST was developed. This was not a sim-

ple step forward, but rather a case of taking many steps

backwards, and then moving forward in a very different

direction, using past lessons as a guide through this new

territory. The result is a system that barely resembles a

computational engine. EEXIST is an abstraction of a highly

simplified machine, infused with the central ideas of the

Cell Matrix and Songline Processor, modified to incorporate

concepts from the real world such as continuity of space and

time. The result is a system that is difficult to understand,

currently impossible to program in any traditional sense,

but seemingly very rich in the behaviors it can exhibit.

It is an ongoing challenge to understand the nature of

EEXIST, and to figure out how to work with it in its most

general, abstract form. This effort is only just beginning, yet

already seems to suggest an interesting, useful architecture,

applicable to a number of different problem areas. The

present work is a description of some aspects of this early

work. What is contained herein is not the end of the story, it

is only the beginning. My hope is that the interested reader

may perhaps find a starting point here for their own research

in this area.

I am indebted to many friends and colleagues for nu-

merous discussions and brainstorming sessions related to

this and similar topics. My students at Clark College have

been a particular source of insight and inspiration in this

work, especially Jordan Curry, Stefanie LoSchiavo, Saulius

Braciulis and Lydia Brynmoor.

Nicholas Macias

Vancouver, Washington, USA

September 2017

Contents

I Part One - Theory

1 Introduction . 1

1.1 Quick View of EEXIST 2

1.2 Chapter Breakdown 2

1.3 Exercises 3

2 Transfer Machines 5

2.1 A Zero-Bit Computer 6

2.2 Branching in a ZBC 8

2.3 Conditionals in a ZBC 8

2.4 A ZBC Programming Language 9

2.5 A ZBC Interpreter 10

2.6 Sample ZBC Programs 12

2.7 Exercises 15

3 Cell Matrix/SLP Background 17

3.1 Cell Matrix 17

3.1.1 Cell Matrix Architecture 18

3.1.2 Sample Cell Matrix Circuits 19

3.1.3 Configuration of Cells: C-Mode 22

3.1.4 Applications of C-mode 27

3.2 Songline Processor 31

3.3 Exercises 33

4 Enhancing the ZBC 35

4.1 Removing the Ego 35

4.2 Continuity of Time 36

4.3 Continuity of Space 37

4.4 Extended Effects: Karma (κ) 38

5 EEXIST:

A Model for an Enhanced ZBC . . . 41

5.1 Memory Structure 41

5.2 Discretization of Memory 43

5.3 Extended Transfer Effects: Karma (κ) 45

5.4 Discretization in Time 47

5.5 Simulation Mechanics 48

5.5.1 Transfer Addressing . 49

5.5.2 Transfer Type . 49

5.5.3 Main Simulation Loop 50

5.6 Effect of Karma 52

5.7 Bias, Diameters 55

5.8 Exercises 57

II Part Two - Experiments

6 Overview, Links to Software 63

6.1 Software Setup 64

6.1.1 Links . 64

6.1.2 General Code Organization 64

6.2 Genetic Setup 66

6.3 Exercises 67

7 Digital Logic . 69

7.1 Basic Setup 69

7.2 3-Input Exclusive Or Gate 71

7.3 Nand Gate 71

7.4 Nor Gate 71

7.5 Frequency Discrimination 73

7.6 Frequency Generation 76

7.7 Another Look at Karma 77

7.8 Exercises 79

8 Tic tac Toe . 81

8.1 Setup 81

8.2 Goals 83

8.3 Results 86

8.3.1 EA7HL . 86

8.3.2 EA8HL . 89

8.4 Lessons and Next Steps 91

8.5 Exercises 94

9 A Lunar Lander Controller 95

9.1 Simulation Setup 96

9.2 EEXIST Interface 97

9.3 Sets of Experiments 98

9.4 Some Results 99

9.5 Diameter Restriction 101

9.6 Conclusions 104

9.7 Exercises 105

10 Ecosystem . 107

10.1 General Idea 107

10.2 Client/Server Setup 108

10.2.1 Query Response . 109

10.3 Additional VEco Mechanics 110

10.4 EEXIST Interface 111

10.5 Experiments 113

10.5.1 Drone Interaction . 115

10.5.2 Longevity Data . 116

10.5.3 Trained Vs Untrained Population 119

10.6 Exercises 120

III Part Three - Next Steps

11 Next Steps . 125

11.1 Evolving vs Learning 126

11.2 Input and Output 127

11.3 Necessity of Bias 127

11.4 Uniqueness of Genomes 128

11.5 Other Models and Implementations 129

11.6 Other Areas to Explore 129

11.7 Other Questions 132

Bibliography . 135

Index . 137

I
1 Introduction . 1

2 Transfer Machines 5

3 Cell Matrix/SLP Background 17

4 Enhancing the ZBC 35

5 EEXIST:

A Model for an Enhanced ZBC . . 41

Part One - Theory

1. Introduction

This manuscript describes a work in progress. It is not a

complete story, nor is it a story whose conclusion has been

reached. It is a description of an ongoing research effort

that, in many ways, started 30 years ago.

The ideas presented herein may not seem useful at first.

The system – EEXIST – is simultaneously difficult to use

and control, and limited in demonstrated applications. It

does not do any one thing better than existing systems; it is

not a drop-in replacement for a von Neumann architecture.

Nonetheless, it is a potentially promising direction in which

to explore interesting concepts related to extending our

notions of computation.

The point of this work is thus to expose new ideas,

new directions in the field of computing. While EEXIST

feels like a very different approach to computation and

control, it is not a randomly-conceived architecture. It has

been deliberately designed, based on lessons learned and

observations of the real world. Successful application of

2 Chapter 1. Introduction

the system to a variety of problems is therefore interesting

beyond the solutions themselves. It is more the fact that

a seemingly unusual architecture, which is so difficult to

imagine controlling, can in fact perform these algorithms.

This is an important point to remember throughout: it is

not the solutions themselves that are intriguing, it is the

challenge of understanding the system at large that is the

main focus of this research.

1.1 Quick View of EEXIST

While carefully reading this manuscript (at least Part One)

should give a fairly complete picture of EEXIST, there are

doubtless some readers who hope to glean at least a high-

level view of the system from this introduction. To that end,

here is an attempt at a one-paragraph synopsis of EEXIST.

The idea of this architecture is to define a system where

time and space are continuous; where the effect of each

action is felt immediately everywhere; and where there is no

distinction between subject and object, because everything

is at all moments acting on and being acted on by everything

in the system.

1.2 Chapter Breakdown

Since the goal of this text is to expand on the above descrip-

tion, to help the reader understand and explore EEXIST

(rather than just apply it to problems), it is thus important

to understand the background of the system. Part 1 of this

text discusses the theory of EEXIST through a number of

topics. Chapter 2 describes a very simple type of com-

puter: a Transfer Machine, also called a Zero-Bit Computer

(ZBC), presented as a starting point for the development

of EEXIST. Chapter 3 reviews relevant background on the

Cell Matrix and the Songline Processor, which are used

in Chapter 4 to specify design goals for an extended ZBC.

Chapter 5 presents a model for this extended system, based

on a system of chemical transfers.

1.3 Exercises 3

Part 2 covers a set of experiments involving application

of EEXIST to different problems, including implementation

of digital logic; frequency detection and generation; game

playing; and control of creatures in a simulated competitive

environment.

Part 3 discusses open questions and next steps.

As with this text as a whole, each of these chapters,

rather than being a final word on any of these topics, is

a launching-off point for future research. The particulars

explored in this manuscript represent one set of possibilities

in a much higher-dimensional design space.

1.3 Exercises

Some chapters include exercises at the end of the chapter.

These are things to think about or try that may help in

understanding the material presented in the chapter.

2. Transfer Machines

What is a computer? Early computers were humans: “com-

puter” was originally a job description. The term “electronic

computer” was used to differentiate artificial computers

from human ones. Computers perform calculations, but

more generally they execute algorithms. This however is a

high-level view of what computers do. It does not answer

the question “What is a computer?”

At a lower level, computers are systems that store infor-

mation and process information based on stored instructions.

At a machine-code level, this is still a reasonable descrip-

tion; but at a lower level – closer to the hardware – the

description changes. Consider a microcoded machine, such

as the VAX-11/780 [2]. Inside the CPU, below the level of

the machine code, is a micromachine. A series of 96-bit mi-

croinstructions direct the behavior of the hardware in order

to interpret the binary machine code. The microinstructions

have one main purpose: to direct the movement of data

through the components of the datapath .

https://en.wikipedia.org/wiki/VAX-11

6 Chapter 2. Transfer Machines

2.1 A Zero-Bit Computer

Note that most of the code in this chapter can be found here

[26].

A standard question in a Digital Logic class is: “how

many different instructions can be represented with n bits?”

The answer (2n) suggests that more than a few bits is often

sufficient, at least in terms of opcodes. A related question

(sometimes posed in my Discrete Structures class) is: “what

is the fewest number of bits required for coding an opcode

in a generally-useful computer architecture?” If we reduce

this to the case of a transfer machine, the somewhat surpris-

ing answer is 0: the system only requires one instruction

(“transfer”) and, being the only instruction, requires no bits

to code it. Each instruction is understood to be a transfer,

and thus only the operands need to be expressed. Hence the

term “Zero-Bit Computer” (or “ZBC”) is sometimes used

to describe such a system.

A ZBC can be viewed as a large memory, containing

pairs of addresses, each pair containing a source (“SRC”)

and a destination (“DST”) address. The understanding is

that, beginning with a first pair, this memory describes a

series of transfer operations that are to take place, copy-

ing the contents of the SRC location to the DST location.

For reasons that will be made clear below, there is only

a single memory, containing both the transfer instructions

and the data being transferred. In other words, the transfer

instructions are themselves potentially subject to transfer.

To do useful work on a ZBC, we require a way to do

things such as arithmetic operations. Computational blocks

– Arithmetic Logic Units (ALUs), multipliers, etc. – are

memory-mapped into the address space, so that, for exam-

ple:

• transferring to address 1011 might copy a value to the

A input of an ALU;

• transferring to address 1012 might copy a value to the

B input of an ALU;

• transferring to address 1010 might copy a value (mean-

ing add) to the FUNCTION SELECT input of an

https://drive.google.com/open?id=0B5jW1Lx4xAtYTGxfSEt2dDZiR0k

2.1 A Zero-Bit Computer 7

ALU; and

• transferring from address 1013 might copy the result

of the specified function of the two inputs (i.e. their

sum).

By having computation and input/output (I/O) blocks

mapped into the ZBC’s address space, one can write code

that performs various procedural steps. For example (using

the above-described ALU), listing 2.1 shows code that will

add the contents of locations 100 and 101 and store their

sum in location 102.

Listing 2.1: ZBC Code to Add Two Variables

Address C o n t e n t s

0 100 ; r e a d t h e f i r s t number

1 1011 ; copy t o ALU(A)

2 101 ; r e a d t h e second number

3 1012 ; copy t o ALU(B)

4 2000 ; use l o c 2000 t o save a c o n s t a n t (1)

5 1010 ; copy t h e l i t e r a l 1 t o ALU(FUNC)

6 1013 ; r e a d t h e ALU’ s o u t p u t

7 102 ; and save i n l o c a t i o n 102

2000 1 ; t h i s i s a l i t e r a l used t o s p e c i f y ADD

This code assumes the ZBC begins executing by read-

ing locations 0 and 1 from memory, and copying from the

address specified in location 0 to the address specified in lo-

cation 1. If we view MEM as an array describing the mem-

ory’s contents, the exact behavior is MEM[MEM[0]] →
MEM[MEM[1]]. In other words, all memory references are

indirect: the transfer is not from MEM[0]→ MEM[1] but

rather from MEM[100] → MEM[1001]. This has the de-

sired effect of copying the first variable to be added (stored

in memory location 100) to the ALU’s A input.

Following this transfer, the ZBC reads memory locations

2 and 3, and transfers from MEM[101] → MEM[1012].
This process continues with successive pair of memory lo-

cations. After the pair at MEM[6] and MEM[7] are read and

processed, the sum of the data in MEM[100] and MEM[101]
will have been stored in MEM[102]. The ZBC has per-

formed an addition of two variables.

Note that if the ZBC executes 1000 consecutive pairs

of instructions, it will then attempt to execute the trans-

fer request stored in MEM[2000] and MEM[2001]. Since

MEM[2000] was being used to store a literal value, exe-

8 Chapter 2. Transfer Machines

cuting a transfer based on that stored value would be un-

desirable. This is, of course, a familiar situation in most

stored-program computers with a single memory: there is

no intrinsic differentiation between code and data. More

generally, in Listing 2.1, it’s unspecified what should hap-

pen after memory locations 6 and 7 are read and processed:

whatever happens to be in memory next will be executed.

This raises the need for some sort of branch capability.

2.2 Branching in a ZBC

Branching is handled very simply, by mapping the pro-

gram counter (PC) itself into the memory of the ZBC.

In the simulated implementation, the PC is mapped to mem-

ory address 65,535. Thus, the following modification to

listing 2.1 causes the code to loop repeatedly:

Listing 2.2: ZBC Code to Add Two Variables and loop forever

Address C o n t e n t s

0 100 ; r e a d t h e f i r s t number

1 1011 ; copy t o ALU(A)

2 101 ; r e a d t h e second number

3 1012 ; copy t o ALU(B)

4 2000 ; use l o c 2000 t o save a c o n s t a n t (1)

5 1010 ; copy t h e l i t e r a l 1 t o ALU(FUNC)

6 1013 ; r e a d t h e ALU’ s o u t p u t

7 102 ; and save i n l o c a t i o n 102

8 2001 ; r e a d t h e l i t e r a l 0

9 65535 ; and copy t o t h e PC

2000 1 ; t h i s i s a l i t e r a l used t o s p e c i f y ADD

2001 0 ; t h i s i s a l i t e r a l used f o r b r a n c h i n g

The additional instruction (at memory locations 8 and

9) specifies a transfer from MEM[2001]→ MEM[65535],
which copies a 0 to the PC, thus causing the instructions to

be re-executed beginning with location 0.

2.3 Conditionals in a ZBC

With procedural statements and looping, we almost have a

complete programming language: the last piece we need is

a way to do conditionals. This is already available though,

since we can manipulate the PC based on the value of a

variable. For example, listing 2.3 shows a simple if/then/else

statement. If the contents of memory location 100 is 0, the

2.4 A ZBC Programming Language 9

code will jump to location 10; if the contents is 1, the code

will jump to location 20.

Listing 2.3: ZBC Code for Conditional Execution

Address C o n t e n t s

0 100 ; r e a d t h e b r an c h v a r i a b l e (must be 0 or 1)

1 1011 ; copy t o ALU(A)

2 2002 ; r e a d t h e c o n s t a n t 2004

3 1012 ; copy t o ALU(B)

4 2000 ; r e a d t h e c o n s t a n t 1

5 1010 ; copy t o ALU(FUNC)

6 1013 ; r e a d ALU’ s o u t p u t (= e i t h e r 2004 or 2005)

7 8 ; and save i n n e x t i n s t r u c t i o n SRC

8 0000 ; p l a c e h o l d e r − copy from 2004 or 2005

9 65535 ; t o t h e PC . Th i s c a u s e s a jump t o 10 or 20

2000 1 ; t h i s i s a l i t e r a l used t o s p e c i f y ADD

2002 2004 ; a n o t h e r l i t e r a l

2004 10 ; b r an ch t a r g e t i f MEM[100]=0

2005 20 ; b r an ch t a r g e t i f MEM[100]=1

Listing 2.3 uses the same ALU operations to add the

contents of MEM[100] to the constant 2004, giving a sum of

either 2004 or 2005. That sum is saved in MEM[8], so that

when that instruction is executed, it specifies either a trans-

fer from MEM[2004] → MEM[65535] or MEM[2005] →
MEM[65535], which copies either 10 or 20 to the PC, caus-

ing the next instruction executed to come from either loca-

tion 10 or 20.

One complication to the above code is that MEM[100]
must be exactly 0 or 1 (since it’s basically being used as an

index into a branch table). Using a comparator (mapped into

the ZBC’s address space, just like the ALU) will work well

here, to generate a 1 or 0 based on a specified comparison.

2.4 A ZBC Programming Language

This is all perhaps a bit awkward, but can nonetheless be

used to methodically code conditional statements which,

along with branches, allow implementation of most any al-

gorithm. To write code more easily, a simple programming

language can be defined as follows:

• two numbers separated by a colon (:) represent a

location/contents pair to store in memory;

• a single number represents a number to be stored in

the next successive location in memory;

10 Chapter 2. Transfer Machines

• everything between a semicolon (;) and the end of the

line is a comment;

• blank lines are ignored

So, for example, the code in listing 2.3 could be written

as shown in listing 2.4 (comments have been dropped):

Listing 2.4: ZBC Code for Listing 2.3

0 :100

1011

2002

1012

2000

1010

1013

8

0

65535

2000 :1

2002:2004

2004:10

20

2.5 A ZBC Interpreter

Using this shorthand, we can write code suitable for inter-

pretation in a simple ZBC interpreter. Listing 2.5 shows a

short C program that ingests code such as shown in listing

2.4 and interprets its execution. You can find this program

in the file “xm.c” available here [26]

Listing 2.5: Code for ZBC Interpreter

i n c l u d e < s t d i o . h>

i n t mem[6 5 5 3 6] ; / / main mem!

d e f i n e PC mem[6 5 5 3 5] / / PC i s a c t u a l l y s t o r e d a t end of mem

d e f i n e DEBUG (mem[6 5 5 3 4]) / / s e t t o 1 t o t u r n on debugg ing

main (i n t a rgc , c h a r ∗∗a rgv)

{

FILE ∗ fp ;

c h a r b u f f e r [1 2 0] ;

i n t add r =0 , da t a , t1 , t2 , from , to , s t a t u s ;

/ / l o a d program i n t o memory

i f (a r g c ==2) fp = fopen (a r gv [1] , " r ") ; e l s e fp = s t d i n ;

w h i l e (NULL != f g e t s (b u f f e r , 1 2 0 , fp)) {

i f (2==(s t a t u s = s s c a n f (b u f f e r ,"% d:%d" ,& t1 ,& t 2))) { / / ad d r : d a t a

add r = t 1 ; d a t a = t 2 ;

} e l s e d a t a = t 1 ; / / j u s t d a t a

i f (s t a t u s >=1) mem[add r ++]= d a t a ;

}

/ / main p r o c e s s i n g loop . . .

w h i l e (1) {

i f (DEBUG) p r i n t f ("%d:%d[%d]=>%d \ n " , PC ,mem[PC] ,

memRead (mem[PC]) , mem[PC + 1]) ;

from=mem[PC+ +] ;PC&0 x f f f f ;

t o =mem[PC + +] ; PC=PC&0 x f f f f ;

memWrite (to , memRead (from)) ;

https://drive.google.com/open?id=0B5jW1Lx4xAtYTGxfSEt2dDZiR0k

2.5 A ZBC Interpreter 11

}

}

/ / memory−mapped−hardware s i m u l a t i o n

i n t a l u f u n c =0; / / 1=+ ,2=− ,3=∗ ,4=/

i n t aluA =0 , aluB =0;

i n t compfunc =0; / /1= > 2==

i n t compA=0 ,compB =0;

memWrite (i n t loc , i n t d a t a)

{

s w i t c h (l o c) {

/ / 1000=DISPLAY

c a s e 1000 : d i s p l a y (d a t a) ; b r e a k ;

/ / 1010=ALU

c a s e 1010 : a l u f u n c = d a t a ; b r e a k ;

c a s e 1011 : aluA= d a t a ; b r e a k ;

c a s e 1012 : aluB= d a t a ; b r e a k ;

/ / 1 0 2 0 =COMPARATOR

c a s e 1020 : compfunc= d a t a ; b r e a k ;

c a s e 1021 : compA= d a t a ; b r e a k ;

c a s e 1022 : compB= d a t a ; b r e a k ;

/ / I f n o t HW, t h e n j u s t w r i t e t o memory

d e f a u l t :mem[l o c]= d a t a ;

}

}

memRead (i n t l o c)

{

s w i t c h (l o c) {

/ / ALU

c a s e 1013 : / / ALU

r e t u r n (a l u v a l u e ()) ;

/ / COMPARATOR

c a s e 1023 : / / c o m p a r a t o r

r e t u r n (compvalue ()) ;

/ / Not HW: j u s t r e a d from memory

d e f a u l t : r e t u r n (mem[l o c]) ;

}

}

/ / s u p p o r t code

d i s p l a y (i n t d a t a)

{

p r i n t f ("%d " , d a t a) ; f f l u s h (s t d o u t) ;

}

a l u v a l u e () / / c a l c u l a t e ALU v a l u e

{

s w i t c h (a l u f u n c) {

c a s e 1 : r e t u r n (aluA+aluB) ;

c a s e 2 : r e t u r n (aluA−aluB) ;

c a s e 3 : r e t u r n (aluA∗aluB) ;

c a s e 4 : i f (a luB != 0) r e t u r n (aluA / aluB) ;

r e t u r n (0) ;

}

r e t u r n (0) ;

}

compvalue () / / c a l c u l a t e c o m p a r a t o r v a l u e

{

s w i t c h (compfunc) {

c a s e 1 : r e t u r n ((compA>compB) ? 1 : 0) ;

c a s e 2 : r e t u r n ((compA==compB) ? 1 : 0) ;

}

r e t u r n (0) ;

}

The main processing loop of this code is only 3 lines,

12 Chapter 2. Transfer Machines

reflecting the very simple nature of the ZBC’s architecture.

The code also includes some memory mapped hardware,

including:

• a display at MEM[1000];
• an ALU at MEM[1010−1013];
• a comparator at MEM[1020]−MEM[1023];
• the PC at MEM[65535]; and

• a debug flag at MEM[65534].

2.6 Sample ZBC Programs

Given this very simple architecture, programs for perform-

ing even modest tasks can be fairly lengthy. Listing 2.6

shows code for counting down from 10 to 0, displaying

each value on an output port (the display mapped to ZBC

address 1000).

Listing 2.6: ZBC Code to Count Down From 10 to 0

65535:0 ; S e t PC=0

65534:0

; c o n s t a n t s

511 :1

512 :10

513 :0

514 :2

515:150 ; f o r i n f i n i t e l oop

520:110

500 :0 ; X

; s t a r t o f program

0:512

500 ; x=10

; LOC 2

500

1000 ; D i s p l a y X

514 ; c o n s t a n t =2

1010 ; ALU func =sub

500

1011

511

1012

; now 1013=X−1

1013

500 ; X=X−1

; s e e i f X=0

514

1020 ; c o m p a r a t o r "=" f u n c t i o n

500

1021 ; A

513 ; 0

1022 ; 1023 shows X==0

511

1010 ; ALU "+"

520

1011 ; 110

2.6 Sample ZBC Programs 13

1023 ; 0 o r 1

1012 ; t o B . . . [1 0 1 3] = 1 1 0 (x < >0) o r 111 (X==0)

; b r an ch t o l o c 100

99

65535

99 :100

; h e r e i s l o c 100

100:1013

101:102

102:000

103:65535 ; i f X<>0 t h i s b r a n c h e s t o [1 1 0] e l s e [1 1 1]

110 :120 ; b r an ch t o 120 i f x<>0

111:150 ; b r an ch t o 150 i f x==0

120:514

65535 ; LOOP!

150:515

65535 ; s t a y h e r e

A more complex example is shown in listing 2.7, which

shows code for generating prime numbers.

Listing 2.7: ZBC Code to Generate Prime Numbers

65535:0 ; i n i t i a l PC=0

65534:0 / d i s a b l e debugg ing :)

;∗∗∗ HW a d d r e s s e s

; 1 0 0 0 : DISPLAY

; 1 0 1 0 : ALU func (1 : C=A+B ; 2 : C=A−B ; 3 : C=A∗B ; 4 : C=A/ B)

; 1 0 1 1 : A

; 1 0 1 2 : B

; 1 0 1 3 : C

;1020 Compara tor r e l a t i o n R (1 : > , 2 : =)

; 1 0 2 1 : A

; 1 0 2 2 : B

; 1 0 2 3 : A r B

500 :3 ; A

501 :1 ; B

502 :0 ; X

; C o n s t a n t s

511 :1

512 :2

513 :3

514 :4

; Program s t a r t s a t 0

0 :511

1 :501 ; b=1

; B=B+2

2 :511

1010 ; ALU s e t t o +

501

1011

512

1012

1013

501 ; B=B+2

; X=A/ B

514

1010 ; ALU s e t t o /

500

1011

501

14 Chapter 2. Transfer Machines

1012

1013

502 ; X=A/ B

; i s B>X?

511

1020 ; c o m p a r a t o r s e t t o >

501

1021

502

1022

; 1023 i s 1 i f b>x e l s e 0

; use t o t o d e t e r m i n e a b r an c h a d d r e s s

511

1010 ; ALU=+

1023

1011

100 ; =101

1012

; 1013 (a d d e r o u t p u t) i s e i t h e r 102 (B>X) or 101

; jump t o 110 (j u s t so we know our PC !)

109

65535 ; r e a d from l o c 109 (= 110) t o PC

109:110 ; l o c 109 c o n t a i n s 110

100:101

101 : 150 / / B <= X code goes a t 150

102 : 120 / / B>X code goes a t 120

; (l o c 110 : c o n t i n u e h e r e)

110 : 1013

111 : 112 ; l o c 112 c o n t a i n s e i t h e r 101 or 102

112 : 0 ; c o n t a i n s 102 i f B>X

65535 ; now t h e PC i s 120 i f B>X

; PRIME !

120 : 500

1000 ; d i s p l a y t h e pr ime number

511

1010

512

1011

500

1012

1013

500 ; A=A+2

511

501 ; B=1 (a g a i n)

510 ; c o n s t a n t 0

65535 ; Jump t o l o c 0

; See i f X== i n t (X)

150 :513

1010 ; ALU func=∗

502

1011 ; X

501

1012 ; B

; [1013]=B∗X

512

1020 ; COMP r i s "="

1013

1021

500

1022

; [1023]=1 f o r compos i t e , 0 f o r c o n t i n u e

179

65535 ; b r a n ch t o [1 7 9] (= 180)

; s e t u p f o r c o n d i t i o n a l b r an c h t o 200 (1023=0) o r 220 (1023=1)

165 :167 ; c o n s t a n t

166 :0 ; e i t h e r 167(c o n t) o r 168 (comp)

167 : 200 ; (c o n t i n u e)

2.7 Exercises 15

168 : 220 ; (comp)

179:180

; b r a n c h e d h e r e . . .

1023 ; 0 o r 1 (c o n t i n u e o r c o m p o s i t e)

1011

165

1012

511

1010 ; [1013]=167 or 168

1013

188

; h e r e i s l o c 188

0 ; f i l l e d i n wi t h e i t h e r 167 or 168

65535 ; b r a n ch t o t h a t l o c

; c o n t i n u e

200:512 ; b r an ch t o l o c 2 (B=B+2)

65535

; c o m p o s i t e

220 :511

1010

500

1011

512

1012

1013

500 ; A=A+2

510

65535 ; b r a n ch t o l o c 0 (B=1)

As with many things at this level, this code is easier

(though not easy) to write than to read! While the ZBC

is not very practical for general purpose programming, it

represents a pared down, minimalist architecture that serves

as an ideal starting point from which to re-build our no-

tion of computation. Before we can do this, we must re-

view some of the ideas that drove this redesign: specifi-

cally, the Cell Matrix and the Songline Processor (SLP)[3].

These are the topic of the next chapter.

2.7 Exercises

1. Download the ZBC code (xm.c), compile it, and run

the count and prime test files (all of these are available

here [26].

2. Write a ZBC program for adding two numbers.

3. Write a ZBC program for printing the larger of 2

numbers.

4. Write a ZBC program for adding a set of numbers.

5. What is a minimal set of memory-mapped hardware

that allows a ZBC to be used for general-purpose

computing?

https://drive.google.com/file/d/0B5jW1Lx4xAtYbmRTaE5Fa2VXZzQ/view
https://drive.google.com/open?id=0B5jW1Lx4xAtYTGxfSEt2dDZiR0k

3. Cell Matrix/SLP
Background

Extensive details on the Cell Matrix and the Songline Pro-

cessor can be found at the main research website http:

//songlinesystems.com [1]. What is presented here is a

high-level summary, specifically of those features that led

to the development of EEXIST.

3.1 Cell Matrix

The idea of reconfigurable logic is straightforward. Soft-

ware is changeable, morphable, able to be modified with

its behavior changing accordingly (that’s the “soft” aspect

of it). Hardware, in contrast, is rigid, fixed in form and

function, and generally difficult to modify without some

sort of invasive procedure (de-soldering, re-wiring, etc.)

(that’s the “hard” aspect of it). Reconfigurable hardware

combines the best of these two models, offering the speed of

a hardware system with the flexibility of a software system.

Thus devices such as field programmable gate arrays [14]

http://songlinesystems.com
http://songlinesystems.com
https://en.wikipedia.org/wiki/Field-programmable_gate_array

18 Chapter 3. Cell Matrix/SLP Background

(“FPGAs”) became popular in the 1980s.

While FPGAs extend the notion of software to the

hardware domain, early devices lacked one important as-

pect of software: the ability of software to examine and

modify itself. This aspect – which is a hallmark of the

stored program computer [15] – offers many advantages

over a system whose configuration is controlled only from

outside the system.

The Cell Matrix [16] addresses this by endowing the

basic reconfigurable elements of the system with the ability

to directly read and write the configuration of other elements.

Before discussing this ability for self modification, it will

be useful to discuss the overall structure of the Cell Matrix,

as well as its basic configurability.

3.1.1 Cell Matrix Architecture

The Cell Matrix is comprised of a large grid of simple,

identical elements called “cells.” Each cell has a set of

inputs and outputs, connecting it to a fixed set of neighbors.

The inputs to a cell are processed by the cell’s internal

program, and the cell generates outputs accordingly. Figure

3.1 shows a set of connected cells.

The program inside each cell is a simple truth table,

which combinatorially maps inputs to outputs. In the 2-D

example shown in figure 3.1, each cell has 4 neighbors, and

thus continually receives a total of 4 bits of input from its

neighbors. The cell also produces a single output bit to each

neighbor, thus requiring 4 output bits. This mapping can be

defined by a truth table, as shown in figure 3.2.

This truth table can itself be defined by the 64 bits in

the output columns. These are stored in a per-cell memory

and define the basic input-to-output mapping of a cell. Note

that the mapping from input to output is unclocked: when

any inputs change, the outputs change in response as soon

as possible. Nothing here is synchronized to any sort of

global clock. While this may make the design process more

complicated than a synchronous one, it offers advantages in

speed and flexibility (and synchronicity can also be added

http://gizmodo.com/the-first-ever-electronically-stored-program-ran-65-yea-528426025
https://drive.google.com/file/d/0B5jW1Lx4xAtYYTllX0hkYWhKczA/view

3.1 Cell Matrix 19

Figure 3.1: Two-Dimensional Matrix of Cells. All cells are identi-

cal except for the program stored inside each one (in the block

labeled “TT”). Connections to neighbors are shown with arrows.

via additional mechanisms described below).

3.1.2 Sample Cell Matrix Circuits

Designing circuits with these cells is fundamentally no dif-

ferent from designing with standard digital logic blocks.

One can, for example, configure cells to act as logic gates

(AND, OR, etc.). Cells can also be configured to act as

simple wires. By combining these in the right way, general

digital circuits can be constructed. Figures 3.3 - 3.5 show

some sample circuits, along with the truth tables used to

20 Chapter 3. Cell Matrix/SLP Background

0 0 0 0 D03 D02 D01 D00

0 0 0 1 D07 D06 D05 D04

0 0 1 0 D11 D10 D09 D08

1 1 1 1 D63 D62 D61 D60

N S W E N S W E

 INPUTS OUTPUTS

...

Figure 3.2: Truth Table For a Cell Connected to Four Neighbors.

Neighbors are referenced by their compass directions (“N,” “S,”

“W” or “E”) relative to the cell. Di refers to the ith bit of the truth

table.

configure each cell.

In figure 3.3, a single cell is being used as a one-bit full

adder : the truth table is simply set up to produce the proper

outgoing sum and carry bits in response to the inputs. Note

that the cell has unused inputs and outputs, but they still

appear in the truth table.

Figure 3.4 shows a set of 8 such one-bit adders, situated

side-by-side so one adder’s outgoing carry is fed to the next

adder’s incoming carry, thus creating an 8-bit ripple-carry

adder. The inputs are fed in parallel to the north and south,

and the parallel sum appears to the south.

Note that this layout could, in theory, be extended to any

number of cells/adders/bits: 1024 cells would produce a

1024-bit adder. While the maximum propagation delay from

a 1024-bit ripple carry adder is likely to be prohibitively

large, the principle is a general one: by carefully designing

blocks of cells to be modular, larger circuits can sometimes

be constructed simply by placing these blocks together in

the matrix. This is one key to autonomous circuit synthesis.

Figure 3.5 shows a different type of Cell Matrix circuit,

this one comprised of two cells. This configuration imple-

3.1 Cell Matrix 21

 INPUTS OUTPUTS

W S E N | W S E N

0 0 0 0 | 0 0 0 0

0 0 0 1 | 0 1 0 0

0 0 1 0 | 0 1 0 0

0 0 1 1 | 1 0 0 0

0 1 0 0 | 0 1 0 0

0 1 0 1 | 1 0 0 0

0 1 1 0 | 1 0 0 0

0 1 1 1 | 1 1 0 0

1 0 0 0 | 0 0 0 0

1 0 0 1 | 0 1 0 0

1 0 1 0 | 0 1 0 0

1 0 1 1 | 1 0 0 0

1 1 0 0 | 0 1 0 0

1 1 0 1 | 1 0 0 0

1 1 1 0 | 1 0 0 0

1 1 1 1 | 1 1 0 0

Figure 3.3: A Single Cell Setup As a one-Bit Full Adder. Incoming

bits are supplied to the north and south; the incoming carry is

applied to the east; the sum is presented to the south; and the

outgoing carry appears on the west. The Boolean equations for

the cell’s truth table are shown inside the cell.

Figure 3.4: 8 Cells Setup As an 8-Bit Adder. Inputs A and B are

supplied to the north and south, and the sum S is presented to the

south. Each cell is identical to the one shown in figure 3.3.

ments a simple D flip flop: a one-bit storage element. The

setup is straightforward: the cell on the left either sends an

incoming bit from the west to the east, or echoes an incom-

ing bit from the east back to the east. The cell on the right

provides feedback, reflecting whatever is sent from the cell

on the left. When the gate is 1, the incoming data bit is sent

to the cell on the right; when the gate drops to 0, that bit

becomes trapped inside the cells, being passed from one to

22 Chapter 3. Cell Matrix/SLP Background

the other repeatedly.

Figure 3.5: A Data Flip Flop. The D input comes from the west,

the clock is presented on the north; Q comes out from the east.

Thus it is possible to design sequential circuits that op-

erate with a clock and synchronize operations using e.g.

standard state machine design techniques. Figure 3.6 shows

a more-complex circuit employing logic blocks, flip flops

and wires (wires are implemented exactly like other func-

tions, i.e. the equation DE → DW copies data from the

eastern D input to the western D output). This circuit imple-

ments a small RAM. One of 16 rows can be addressed with

the inputs A3, A2, A1 and A0. When the WRITE input is

high, the 4 data bits D3−D0 (from the top of the circuit) are

loaded into the selected row of flip flops. When the READ

input is high, the selected row’s flip flops supply outputs to

D3 −D0 at the bottom of the circuit.

3.1.3 Configuration of Cells: C-Mode

The above description of cells covers their behavior in terms

of data processing, i.e., transforming inputs to outputs.

While this is sufficient for implementing standard digital

circuits, it doesn’t allow for introspection as described in

the start of this chapter: in particular, it does not explain

how cells are configured. To allow cells to be configured by

other cells, we add an additional input and output to each

side of the cell, giving a cell as shown in figure 3.7.

3.1 Cell Matrix 23

Figure 3.6: More-Complex Cell Matrix Circuit. This layout imple-

ments a small memory. The left side of the circuit routes address

inputs (A3−A0) from top to bottom; the 4th column outputs a 1 to

the right when the address matches that row’s address. The match

output is combined with the READ and WRITE inputs to drive

the array of flip flips (on the right side of the circuit). Each flip

flop is comprised of a cell (“f”) and a feedback circuit to its right

(similar to the circuit in figure 3.5. Inputs are loaded in response

to a match from the address block combined with a WRITE signal.

Flip flop outputs are sent to the “g” blocks, which either pass the

prior block’s output from north to south (if there is no match);

or pass the flip flop’s output to the south (if the flip flop is being

addressed by the A3 −A0 inputs).

In this cell, the C inputs are used to control the configu-

ration of the cell, as follows:

• if C = 0 (called “D-mode”), then the D inputs are

processed as described above: they reference a row

of the cell’s truth table, which contains the outputs

that are sent to neighboring cells;

• if C = 1 (called “C-mode”), then the corresponding D

input is used to supply truth table bits, i.e., to populate

the cell’s truth table. The corresponding D output is

24 Chapter 3. Cell Matrix/SLP Background

0 0 0 0 D007 D006 D005 D004 D003 D002 D001 D000

N S W E CN CS CW CE DN DS DW DE

 INPUTS OUTPUTS

...

Figure 3.7: Full Cell Matrix Cell. There are two inputs and

outputs (“C” and “D”) connecting this cell to each neighbor.

The D lines are used for regular data processing, while the C

lines are used for configuring the cell.

used for reading the truth table’s current contents.

C-mode operations are clocked via a system-wide clock

(which is only used in C-mode, but can be tapped into and

utilized by D-mode circuitry).

Figure 3.8 shows the interaction of C- and D-modes, as

well as a typical read/modify/write operation. When the cell

(configured as a simple wire DE → DW) is in D-mode, its

eastern output reflects its western input, regardless of the

state of the system clock. When the cell enters C-mode, the

D output changes to reflect the “first” bit (D000 according

to the pre-defined ordering shown in figure 3.7) in the cell’s

truth table. On the rising edge of the clock, the D input

3.1 Cell Matrix 25

is sampled and saved inside the cell. On the falling edge,

that saved value replaces the first bit in the truth table, and

the D output now reflects the second truth table bit. When

the C input returns to 0, the cell re-enters D-mode, and the

D output now reflects the results of applying the cell’s D

inputs to its new truth table.

SYSTEM

CLOCK

DWin

DEout

CWin

DWout

All inputs not shown=0
D000 D002

D008

Most D outputs forced to 0 in C Mode

Cell is in C ModeCell is in D Mode D Mode

DEout

mirrors

DWin

DWout shows old TT in C Mode

D001

End of 8th

C Mode

Clock Cycle

D009 D Mode

truth table output for

DWin=DEin=DSin=DNin=0

Figure 3.8: Interactions of C-mode, D-mode and the System Clock.

In D-mode, the system clock has no effect on the cell. In C-mode,

reading and writing of the cell’s truth table is synchronized to the

system clock.

This simple setup allows a number of interesting circuits

to be implemented. For example, figure 3.9 shows a cell

reader. The cell on the right places the target cell into C

mode by asserting a 1 to its CW output (which is the target

cell’s CE input). The target cell sends its current truth table

bits out its DE output, which the cell reader ingests from

its DW input. The cell reader copies those old truth table

bits back to its DW output, which loads them back into

the target cell’s truth table (thus effecting a non-destructive

read). The target cell also copies those truth table bits to its

own DS output, where another cell could pick them up and

process them.

Figure 3.10 shows a cell replicator , which is similar to

the cell reader, but with one small change: the CS output

is set to 1. With this change, the bits being read from the

target cell’s truth table will be copied into the cell to the

south, thus making that cell an exact copy of the target cell.

26 Chapter 3. Cell Matrix/SLP Background

Figure 3.9: A Cell Reader. The target cell’s truth table is read by

the cell reader. As bits are received, they are re-sent to the target

cell, making the read non-descructive.

Figure 3.11 shows a further embellishment to the cell

replicator. In this circuit, the cell replicator is connected

to a horizontal row of 3 circuits which copy bits from the

west to the south and east, while asserting their CS output.

The result is that four copies of the target cell are created

(in the second row of the circuit). Note that these copies are

created in parallel: the writing of all 4 truth tables occurs at

the same time. This is thus a parallel cell replicator.

It should be noted that the 3 cells on the right of the

top row are identical to each other. This means that these

cells could themselves have been configured in parallel. Of

course, that would require another circuit to perform that

parallel replication, so it would seem parallel replication of

n cells always requires (at least) n operations to set it up.

In fact, this is not true: done properly, it takes on the order

of n operations to configure n2 cells in a 2D matrix. On

a 3D matrix, n operations are sufficient for configuring n3

cells. Circuits for doing these better-than-parallel builds are

called “Medusa Circuits” [17].

https://drive.google.com/file/d/0B5jW1Lx4xAtYNGV6XzY5eVJ1OGc/view

3.1 Cell Matrix 27

Figure 3.10: A Cell Replicator. The cell replicator reads the

target cell’s truth table bits, but copies those bits into the truth

table of the cell to the south, thus making it an exact copy of the

target cell.

3.1.4 Applications of C-mode

Some of the most important aspects of the Cell Matrix are

the following:

• the process of configuring cells is intrinsic to the

overall architecture;

• control over cells can be realized from within the

system itself;

• the control is distributed throughout the system;

• controlled and controlling entities are interchangeable

(“non-dualism”); and

• the homogeneity of the cellular organization makes

the architecture highly scalable.

By properly utilizing these features, a variety of behav-

28 Chapter 3. Cell Matrix/SLP Background

Figure 3.11: A Parallel Cell Replication Circuit. The top row of

cells copies truth table bits from the target cell to the four cells

on the second row. The replication occurs in parallel: all 4 truth

tables are written simultaneously.

iors can be realized in circuits built on the Cell Matrix. The

following is a partial list of some of the areas where the Cell

Matrix is particularly well-suited:

• Highly-parallel processing. If a problem can be di-

vided into a set of identical, independent sub-tasks,

then groups of cells can be configured to perform one

set of sub-tasks, and then replicated to perform multi-

ple sets in parallel. While overhead such as control

and communication potentially obviate such perfor-

mance gains, the ability to build custom control and

communication channels (in parallel) makes it possi-

ble to realize significant speedups. This is especially

true for so-called “embarrassingly parallel” problems.

Examples include massive search problems; simula-

tion of 2-D and 3-D systems; finite element analysis;

and so on.

• Fault tolerant computing. Much work has been done

on using the Cell Matrix’s self-configurability to build

and run test circuits in order to check for hardware

defects. The trick – being able to handle potential

errors in the test circuits themselves – plys the self-

configurability and non-dualism of the system. More-

over, parallel testing is possible, as is parallel synthe-

sis of the test circuits themselves: see this final report

https://drive.google.com/file/d/0B5jW1Lx4xAtYRkNZN3A4MlZ6ek0/view

3.1 Cell Matrix 29

[18] on a NASA SBIR investigating use of the Cell

Matrix for autonomous fault handling.

• Adaptable Computing. There are domains where be-

ing able to change the micro-architecture of a system

at run-time may be useful, for example:

– if the same operation is being performed on the

elements of a large dataset, multiple hardware

instances can be created to operate on the data

in parallel;

– if an array processor needs to switch between

integer, floating point and character processing,

the underlying hardware can be re-purposed to

the required datatype;

– if a set of instructions are repeatedly executed

more frequently than other sections of code, they

can be cast into hardware, allowing for faster

execution (just-in-time hardware synthesis).

These are but a few examples of where adaption of

the hardware may be useful. In all cases though, it is

the ability of the hardware to manage the modification

of itself that makes the Cell Matrix a good fit.

• More generally, the interplay between C and D mode

allows for the possibility of, say, compiling high-level

code into a mix of software and hardware. This is no

different from a compiler that takes advantage of a

hardware floating point accelerator (FPA): it simply

adds a layer of designing and implementing the FPA

alongside the machine code.

• Simulation of a Cell Matrix (yes, this is a thing!)

While simulation in software is straightforward, it is

also inherently slow, as performance degrades in pro-

portion to the number of cells being simulated. With a

hardware-based simulation, there is no inherent slow-

down as more cells are added to the simulation. But

being able to simulate a matrix allows, for example:

– the ability to freeze the system, or to step it

forward slowly while observing its state;

– the ability to examine internal cells (whose in-

30 Chapter 3. Cell Matrix/SLP Background

puts and outputs are normally only available to

neighboring cells);

– the ability to address individual cells and inter-

act directly with their truth tables;

– the ability to reset the state of part of the system

without performing a system-wide reset;

– the ability to efficiently record a history of sys-

tem states, with an option for rolling back to a

prior state;

and so on.

• The Cell Matrix can be used as a process improve-

ment driver for support of aggressive manufacturing.

By targeting the matrix and using its ability for self-

analysis, it can help diagnose manufacturing errors

within itself, thus helping to debug the manufacturing

process itself. One recent theoretical example of this

is using self-assembly to build a physical matrix from

a collection of 3D cells. The cells are manufactured in

parallel, and then allowed to self-assemble into a 3D

array. In so doing, their orientation is uncontrolled,

meaning the final matrix has cells whose orientation

is effectively random. This makes it impossible to

load truth tables in a meaningful way: building a wire

to copy data from a given side to another requires

knowing whether those sides are on the north, south,

etc. of the cell, and without a fixed physical orien-

tation, this is unknown. However, the cells’ ability

to introspect allows for circuits and algorithms that

let the cells discover and correct-for their own orien-

tation (in parallel). See http://journal.frontiersin.org/

article/10.3389/frobt.2016.00002/full [19] for details.

• The Cell Matrix can be embedded alongside other

hardware (e.g. MEMS-based systems), and used as a

distributed control and communication network, with

all the inherent advantages of massive parallelism,

fault tolerance and scalability.

http://journal.frontiersin.org/article/10.3389/frobt.2016.00002/full
http://journal.frontiersin.org/article/10.3389/frobt.2016.00002/full

3.2 Songline Processor 31

3.2 Songline Processor

The central themes of the Cell Matrix – self-configuration,

homogeneity of the cells, lack of centralized control, nearest-

neighbor interconnect – have proven interesting and useful

in different ways. Nonetheless, the underlying architecture

still derives from more standard models of computation: the

system is binary in nature; it employs a clock for reading

and writing cell memories; and, despite the interchangeabil-

ity of modes, each cell is, at any given moment, either in D

or C mode, i.e., executing its program or being programmed.

The Songline Processor (SLP) is an attempt to retain

those unique features of the Cell Matrix, while freeing the

architecture from the more standard characteristics. This

changes the C and D mode behaviors of the Cell Matrix as

follows:

• The values being passed from cell to cell are real-

valued vs. binary. This in itself is not such a big

difference. In a typical digital system, the binary

values are actually voltages, but the circuitry simply

restricts those voltages to one of two ranges (“high”

and “low”; or 1 and 0). To pass a real-valued signal,

just think perhaps of a voltage that can vary anywhere

between 0V and 5V. So the D inputs and outputs are

real-valued.

• The C inputs and outputs are also real-valued. This

requires a reinterpretation of how a cell’s mode affects

its behavior. Instead of mode being a binary state (say

1=C Mode and 0=D Mode), the mode is now a mix

of C and D modes. In practice, this means a cell’s

truth table may be partially perturbed by incoming

D values; and D outputs may be a mix of a cell’s

program output and the program itself.

Implementing these changes requires changing the na-

ture of a cell’s truth table. In a cell with binary inputs and

outputs, it is possible to exhaustively describe all possible

input combinations with a finite number of rows. Adding

real-valued outputs doesn’t in itself change this: the entries

in the truth table’s output columns are simply real numbers

32 Chapter 3. Cell Matrix/SLP Background

instead of binary digits (bits). But since one cell’s outputs

are connected to another cell’s inputs, the inputs to a truth ta-

ble are now also real-valued. This means the set of possible

input combinations is (uncountably) infinite. One cannot

write a table with a finite collection of rows to represent all

possible input conditions: even for a single input, the set of

possible input values has the same cardinality as the set of

real numbers.

Viewed differently though, this is really not so mysteri-

ous: the “truth table” is now simply a real-valued function

of real variables (e.g. z = sin(x2 + y2)). Such a function,

however, is not easily stored in a table (unless the input

space is discretized). Moreover, even if the function were

somehow stored (say, as a curve or a surface), it’s not clear

how to perform the C mode operations of reading and writ-

ing this function. For a curve (e.g. a function of a single

variable), one may sweep the input from its minimum value

to its maximum value, and thus read/write the entire essence

of the function in a fixed amount of time. For 2 or more

inputs, there’s no obvious (continuous) way to sweep the

entire space of input combinations in a finite amount of

time. Utilizing some sort of space-filling curve may work,

but this is currently an unsolved problem.

By abandoning the system clock though, there are other

ways to transfer these functions: for example a 2D surface

can be used to transform a second surface so as to mimic

the first (imagine a 2D sheet of plastic, shaped to represent

the Z value of z = f (x,y), and used as a mold to shape a

second target piece of plastic).

There are other possibilities as far as implementation:

further details are available here [3]. Despite these issues,

simulation is still feasible, and has been used to develop

and test some sample applications of the Songline Processor.

For example, a single cell can be used to multiply two inputs:

this is effectively an amplifier. Differentiation, integration,

sample-and-hold, amplitude modulation, and other types

of signal processing are each easily achieved with just a

few cells. This suggests that the Songline Processor is,

https://drive.google.com/file/d/0B5jW1Lx4xAtYbmRTaE5Fa2VXZzQ/view

3.3 Exercises 33

in some ways, fundamentally different from a traditional

digital/von Neumann machine. These differences suggest

ways to extend the Zero-Bit Computer, as discussed in the

next chapter.

3.3 Exercises

1. Write the Boolean equations for a single-cell 2-1 se-

lector on the Cell Matrix.

2. Design a T flip flop on the Cell Matrix.

3. Design a T flip flop without using D flip flops. This

can be done with only 3 cells.

4. Design a 4 bit register.

5. Design a 4 bit register using only 5 cells (note that

the clock will need to be sent to multiple cells, and

the wires for routing the clock signal are not included

in the 5 cells).

6. Design a single cell for swapping the truth tables of

two neighbors.

7. Design a circuit on the Songline Processor for mea-

suring how similar two signals are to each other.

8. Design an SLP circuit for mathematically composing

two functions.

9. Design an SLP circuit for composing two functions,

and programming a cell with that new composite func-

tion.

4. Enhancing the ZBC

Recall that the ZBC is basically a transfer machine, pro-

grammed by naming pairs of SRC/DST addresses. The

machine repeatedly performs copies from SRC → DST , but

despite this perhaps peculiar architecture, the system is

still essentially a von Neumann machine: it has a program

counter (PC), which is used to pull instructions from mem-

ory, which perform read/modify/write operations on the

memory. The PC is automatically incremented from instruc-

tion to instruction, but can also be explicitly loaded.

4.1 Removing the Ego

This architecture (as with most stored-program computers)

already contains one important aspect of the Cell Matrix:

the interchangeability of code and data. The contents of

memory can be interpreted as data or as instructions, and in

general, it is impossible from simply looking at the contents

itself to tell whether that contents is data or code. We wish to

36 Chapter 4. Enhancing the ZBC

preserve this interchangeability (this is the “egoless” aspect

of EEXIST).

Despite this interchangeability, there is still an imper-

fection in this non-dualism. While a cell within the Cell

Matrix can operate in either C or D mode, it is, at any given

time, in only one of those modes. It’s not possible for a

cell to be in both C and D mode. The Songline Processor

makes some progress in this area, as its cells’ C inputs ac-

cept a real-valued number, allowing a cell to operate in a

partial-C/partial-D mode. This is still imperfect: perfect

non-dualism suggests each cell be fully in both C-mode and

D-mode at all times, i.e. that it can be both a subject and an

object simultaneously. The shortcoming is not really in the

architecture per se, but rather in the fact that instructions

operate one at a time, so that (as with the Cell Matrix), some

piece of memory may first be a piece of code, but then may

later be treated as a piece of data, and then still later as,

again, a piece of code. This is our first hint that sequential

execution will need to be abandoned.

4.2 Continuity of Time

Both the Cell Matrix and the Songline Processor have a

schism in how they process information: in (pure) D-mode,

everything happens asynchronously. Inputs cause outputs to

change immediately, and those outputs flow into connected

inputs, and so on. All this happens without a clock. But

in C-mode, there is a system-wide clock which is used to

control the sampling and presentation of inputs and outputs

representing the new and old code. If we are to perfectly

merge C and D mode so that every piece of the system is at

all times (potentially) both a subject and object of a transfer,

we will need to decide whether everything is clocked or

everything operates in a dataflow mode. Using the natural

world as a model, it seems most natural to have the entire

system operate without a clock. This however makes the

notion of a PC mostly unusable. Consider a typical descrip-

tion of the PC: “the PC is incremented at the beginning of

4.3 Continuity of Space 37

an instruction’s execution cycle.” This description is very

clock-centric: the notions of “beginning” and “execution

cycle” each convey a sense of clocked operation.

But if the PC is eliminated, what determines which

instruction is being executed? The answer is simple: all

instructions are executed simultaneously. This is perhaps

a difficult thing to imagine. In the simple ZBC, each in-

struction specifies a transfer from SRC → DST , and this

transfer is an atomic unit: it begins, the transfer takes place,

and then the instruction is finished. Rather than viewing

this as clocked, we may view it as discretized. Following

that line of thought, envisioning this as a clockless process

means viewing the transfer as a continuous process. Thus,

we imagine that the transfer from SRC to DST happens over

a period of time1, as opposed to at a single instant (e.g. the

edge of a clock tick).

4.3 Continuity of Space

The most significant difference between the Cell Matrix and

the Songline Processor is the change from discrete values

(1 or 0) to continuous values (coming from the set of real

numbers between 1 and 0). This continuity certainly makes

modeling and interfacing with with real world seem more

natural, and, being in some sense a superset of the discrete

version, seems reasonable to apply to the ZBC.

At first glance, this seems straightforward: let the values

stored in memory be real-valued, so that transferring from,

say, MEM[100]→MEM[105] copies a real value instead of

just an integer. So if MEM[100] contained the value π , then

after the transfer, so does MEM[105] But because code and

data are identical, what happens when the instruction pair

stored at locations 100 and 101 is executed? That would

imply a transfer from MEM[π], whatever that means...

1“clockless” is very different from “timeless.” We still expect there

to be a time component to the operation of EEXIST: things do not

happen instantaneously, even though they are unclockes

38 Chapter 4. Enhancing the ZBC

Here again, the real issue is discretization, in particular

discretization of space. The conclusion is clear: space must

also be made continuous. In particular, the address space

in which instructions are stored should be addressable with

real values. This is a very different kind of memory system

from a typical von Neumann machine, as well as from the

Cell Matrix and the Songline Processor.

4.4 Extended Effects: Karma (κ)

Assuming that a (theoretical) memory can be designed to

be addressed by real numbers, there is an additional is-

sue that arises. Suppose that (just for the sake of argu-

ment) an instruction specifies a transfer: MEM[1.414]→
MEM[2.71828] In the context described so far, the effect

of this instruction is like a Dirac delta function, in that

it specifies a transfer from precisely one point to another.

For example, while the data at location 2.71828 would be

loaded with the contents of location 1.414, the data at loca-

tion 2.7182800001 would be left unchanged, as would the

data at 2.7182799999.

This seems a bit unnatural, at least in terms of everyday

experience. It feels discontinuous, borderline chaotic: be-

cause if the instruction at MEM[2.7182799999] is unrelated

to the instruction at MEM[2.7182800000], a slight perturba-

tion in the coding of MEM[1.414]→ MEM[2.71828] could

have a significant change on the system’s behavior.

In response to these notions, the idea of an extended

effect is introduced. Basically, each transfer instruction

MEM[SRC] → MEM[DST] is interpreted as not only re-

questing that data be copied from SRC to DST , but also

from SRC− δ to DST − δ , where δ ranges over some in-

terval. However, the strength of that transfer weakens as

|δ | increases. The exact meaning of “strength” will be de-

fined in the next chapter. For now, suffice to say that not

all transfers have the same impact on memory: some will

barely change the contents of MEM[DST], while others

may impact the contents significantly.

4.4 Extended Effects: Karma (κ) 39

This distributed impact is termed Karma (κ), and ul-

timately relates to the impact a transfer instruction may

have on itself. Suppose, for example, MEM[10] contains

the instruction MEM[20]→ MEM[11]. The instruction at

location 10 is requesting data be copied from location 20

to location 11. Normally, only the contents of MEM[11]
would be affected by this. In the presence of karma, loca-

tions near address 11 would also be affected. If κ is large

enough, then MEM[10] would also be affected, i.e., the

instruction’s requested action is impacting itself. In other

words, there is an intermingling of effect with cause.

This completes the basic catalog of characteristics we

wish to have in the enhanced ZBC. What is required next

is a model for implementing these characteristics. The

chosen model is not necessarily practical, but will give us

a simulation target with which we can explore this system.

This model is called “EEXIST”: Egoless EXtended effect

contInuous Space Time.

5. EEXIST

Exploring this proposed architecture – studying its behavior,

potential applications, and so on – requires some sort of

model that captures the characteristics described above. The

proposed model (“EEXIST”) is neither unique nor necessar-

ily ideal, but it has worked well enough to begin exploring

these concepts.

5.1 Memory Structure

A traditional memory subsystem, viewed as a collection

of indexed holding bins, does not extend to a spatially-

continuous layout as needed for EEXIST. Instead, imagine

a porous substrate, capable of holding liquid at any place

throughout its extent: something like a long, rectangular

sponge with its largest dimension labeled “x” (figure 5.1).

The amount of liquid present at some location x would

represent the value stored at that address , i.e. MEM[x].
Let’s clarify the notion of “amount of liquid”: if x is truly a

42
Chapter 5. EEXIST:

A Model for an Enhanced ZBC
point location, then the volume of liquid at x tends towards

0 (as δx → 0 in our volume calculation). But consider,

instead, the height of the liquid at address x, as shown in

figure 5.1.

X

Figure 5.1: Image of EEXIST Memory as a Liquid-Filled Sponge.

The line shows the height of the liquid at different x positions,

which codes the value of MEM[x].

The contents of MEM[x] is now simply the height of

the liquid at position x along the horizontal dimension. Not

that while this appears to change smoothly in the figure, no

assumption is made about continuity of values.

Since memory will be addressed by a continuum of

values, there is no longer a notion of “next” or “adjacent”

addresses: we cannot treat memory addresses in pairs as we

can with a normal memory. So instead of coding SRC →
DST instructions in pairs of addresses, we store one transfer

instruction per address. To do this, we consider two differ-

ent liquids, named “SRC” and “DST.” Throughout, SRC

will be show as a red chemical, and DST as a blue chemi-

cal. At any given position x in the medium, the mixing of

these chemicals is irrelevant, as is their location along the y

dimension. For simplicity, we will usually show the SRC

chemical as situated below the DST chemical; but all that is

relevant is the height of the regions containing the SRC and

5.2 Discretization of Memory 43

DST chemicals at a given x location.

X=24.5

SRC

DST

{
{

SRC=2.1

DST=1.7

Figure 5.2: Front-view of the Chemical Memory. The red region

corresponds to the SRC chemical, and the blue region corresponds

to the DST chemical. The relative position of SRC and DST (e.g.

which is on top) is irrelevant: the height of each region (top to

bottom) codes the desired information.

Figure 5.2 shows a front view of this memory setup.

The lower red region shows the values of SRC, while the

upper blue region shows DST. For the position marked

x, it is the thickness of the SRC region that codes the ac-

tual SRC address. Similarly, the thickness of the DST re-

gion codes the DST address. In the figure, at the point

x = 24.5, we have a SRC value of 2.1 and a DST value

of 1.7. Hence, MEM[24.5] codes a transfer instruction

MEM[2.1]→ MEM[1.7].

5.2 Discretization of Memory

In this example, since SRC and DST vary smoothly, the

instruction at, say, MEM[4.51] would be similar to what’s

at MEM[4.5]. While there is no requirement for continuity

of the boundaries of the SRC and DST regions, having these

change smoothly allows us to approximate the system with a

series of discrete tubes1, as shown in figure 5.3. Here we are

1This discretization does not contradict our original motivation for

making the spatial dimension continuous: it’s merely a nod to ease of

simulation.

44
Chapter 5. EEXIST:

A Model for an Enhanced ZBC
breaking the x dimension into a series of thin regions, where

each region has a given height of SRC and DST chemicals

(where again, SRC and DST are color coded red and blue,

respectively).

...

X

SRC

DST

x

{

Figure 5.3: Discretized View of SRC/DST Memory. The x dimen-

sion is broken into a set of small intervals, each viewed as a thin

tube containing both SRC and DST chemicals. SRC is shown in

red, DST is shown in blue.

This is only an approximation of an ideal EEXIST mem-

ory; but if we let these tubes grow thinner and more numer-

ous, then this model approaches the ideal. This discretized

model makes it easier to simulate the system though, and is

the model we’ll work with throughout this text. It remains

an open question whether this model changes smoothly to

the ideal in the limit, or if the behavior of the system some-

how fundamentally changes in the pure-continuous case.

See Part III for this and other discussions of future-work.

In this context, for example, a memory transfer instruc-

tion such as MEM[5] → MEM[6] would request that the

contents of memory at location x = 5 be transferred to loca-

tion x = 6. This differs from a usual memory copy in two

ways:

1. The instruction actually specifies a transfer of con-

tents rather than a simple copy. In EEXIST, chemicals

(both SRC and DST chemicals) are moved from the

SRC location to the DST location; and

2. the transfer is not instantaneous, but rather occurs

over a period of time.

If the instruction executes for enough time, eventually

a complete transfer will have taken place, and MEM[SRC]

5.3 Extended Transfer Effects: Karma (κ) 45

will be empty, its contents completely moved to MEM[DST].
In practice, this may not happen, for two reasons:

1. The transfer instruction itself is likely to change, in

response to other transfer requests elsewhere in the

system (or possibly in response to itself); and

2. other transfer requests may continually be loading

chemicals into MEM[SRC].

5.3 Extended Transfer Effects: Karma (κ)

Viewing the memory of EEXIST in this way, transfer in-

structions themselves can be coded precisely (since the

level of SRC and DST chemicals are real-valued), but the

action of those transfers is approximated, since space is

a discritized approximation of a continuum. For example,

suppose the x domain ranges from 0 to 40 (inclusive), and is

broken into tubes of width 0.03125. Suppose also MEM[0]
specifies a transfer MEM[5.51]→ MEM[6.02]. There are

tubes corresponding to 5.50000 and 5.53125, but not to

exactly 5.51. Similarly, there are tubes corresponding to

6.00000 and 6.03125, but not to exactly 6.02. This raises

a question of how to map such a transfer to our discretized

space.

Rather than just rounding transfer addresses to the near-

est tube, EEXIST distributes the effect of a transfer request

to a region of tubes. Continuing the above example of a

transfer from MEM[5.51]→ MEM[6.02], this instruction

would be interpreted as transferring from a region of mem-

ory locations centered at 5.51 to a region of memory loca-

tions centered at 6.02. Nearby regions will also be affected,

but to a lesser extent.

Figure 5.4 shows a profile of how much a transfer re-

quest from MEM[5.51] will affect nearby regions. Ignor-

ing discretization of space, such an instruction will have

the greatest impact on MEM[5.51], but will also have a

(lesser) impact on MEM[5.50] and MEM[5.52]. The re-

quest will also affect (to an even lesser degree) MEM[5.49]
and MEM[5.53], and so on. The impact curve could be

46
Chapter 5. EEXIST:

A Model for an Enhanced ZBC
made bell-shaped, but for simplicity and speed of simula-

tion, a simple linear profile has been chosen.

E ect of

Transfer

Request

100%

0%
5.51 5.52 5.53 ...5.50... 5.49

Figure 5.4: Curve Showing Effect of a Transfer Request. The

most prominent effect will be centered at MEM[5.51], but nearby

locations will also be affected, with the effect dropping off linearly

for a distance of κ on either side of 5.51. For a transfer request

centered at location p, the effect at location x is denoted Dκ(x, p).

κ controls the extent of this distributed effect (the “karma”

of the system). A transfer request MEM[x]→ MEM[y] will

actually affect addresses from MEM[x−κ] to MEM[x+κ],
transferring chemicals from those addresses to addresses be-

tween MEM[y−κ] and MEM[y+κ]. The most pronounced

effect will be at MEM[x] and MEM[y], with the effect ta-

pering off to zero at e.g. MEM[x− κ] and MEM[y− κ].
This turns out to be useful far beyond the simple question of

mapping in discretized space: the karma of the system fun-

damentally affects the large-scale behavior of the system.

The extreme values for κ are worth considering:

• If κ = 0, transfers have a purely local effect. Each

transfer specifies a point-source and point-destination.

This in some ways mimics the behavior of a tradi-

tional (discretely-address) memory.

• If κ = Xmax, then any transfer will affect every region

of the memory, though the effect diminishes away

from the specified SRC and DST.

• If κ = ∞, then any transfer affects all regions equally,

i.e. a transfer request from

MEM[SRC]→ MEM[DST]

5.4 Discretization in Time 47

causes an equivalent transfer

MEM[SRC−∆]→ MEM[DST −∆]
for all ∆.

κ is generally fixed for the entire system, but in some

experiments it has been modified over the course of a run. It

could also theoretically change from spatial point to point.

5.4 Discretization in Time

To allow for transfer requests to interact with one another,

chemical transfers do not occur instantaneously, but rather

over a period of time. For example, the transfer request

MEM[5]→ MEM[10] says to move chemicals from loca-

tion 5 to location 10. One may view this as connecting a

pipe between those locations, and allowing chemicals to be

siphoned off from location 5 to location 10. This transfer

happens at a finite rate, so that over time the chemical level

at MEM[5] drops while the level at MEM[10] rises. The

details of this transfer are described below in the Simulation

Mechanics section.

Such a transfer can be approximated by repeatedly in-

crementing time by a small amount ∆t, where ∆t > 0. The

goal of course is to have ∆t approach 0, but in practical

terms, the smaller ∆t is, the longer the simulation takes. If

we imagine ∆x and ∆t approaching 0, we can describe the

state of the system with a pair of equations.

We idealize κ (karma) by using a curve for the effect

Dκ(x, p) (the “effective diameter due to κ”) on MEM[x] of a

transfer request at location p, and letting Dκ(x, p)= e−
(x−p)2

κ

If κ = 0 then Dκ(x, p) is 0 everywhere except where x = p.

As κ increases, the effect Dκ(x, p) still has a maximum

value where x = p, and tapers-off (but is non-zero) every-

where else. As κ → ∞, Dκ(x, p) flattens out, and in the

limit, is equal to 1 everywhere. See figure 5.5.

Let SRC(p,T) and DST (p,T) be the amount of SRC

and DST chemicals (respectively) at position p and time T .

We can now describe the theoretical behavior of SRC and

DST with a pair of integral equations:

48
Chapter 5. EEXIST:

A Model for an Enhanced ZBC

(a)

(c) (d)

(b)

Figure 5.5: Idealized Effect of κ on Dκ(x, p). For κ = 0, this is

an impulse function (a). As κ increases, it becomes a bell-shaped

curve (b), distributing transfer effects over more and more space.

As κ approaches ∞, the curve widens (c) until it is a flat line (d).

SRC(p,T) = SRC(p,0)+
∫ T

0

∫

∞

−∞

e−
(DST (x,t)−p)2

κ − e−
(SRC(x,t)−p)2

κ dxdt

DST (p,T) = DST (p,0)−
∫ T

0

∫

∞

−∞

e−
(DST (x,t)−p)2

κ − e−
(SRC(x,t)−p)2

κ dxdt

5.5 Simulation Mechanics

Simulation of EEXIST has changed little since the begin-

ning of this project. This doesn’t suggest that the chosen

knob settings are ideal; rather, it shows (perhaps) the rela-

tive insensitivity of the system to the particular choice of

settings.

Current settings are as follows:

• range of x: 0.0 to 40.0

5.5 Simulation Mechanics 49

• ∆x: 0.03125

• ∆t: 0.05

• κ: typically 5, but sometimes valued between 2 and

10

If a transfer instruction requests a transfer to (or from)

location p, the effect on MEM[x] is defined by Dκ(x, p),
which is approximated with a set of linear functions, as

follows:

Dκ(x, p) =

0, if x ≤ p−κ

κ−|p−x|
κ

, if p−κ < x < p+κ

0, if x ≥ p+κ

(5.1)

5.5.1 Transfer Addressing

The first step in simulating the effect of transfer requests is

to determine the actual source and destination addresses for

each transfer. Suppose MEM[X] contains the instruction:

MEM[SRC] → MEM[DST]. This can be interpreted two

ways:

1. SRC and DST can be the absolute source and destina-

tion addresses; or

2. SRC and DST can be relative addresses, i.e., X +SRC

and X +DST are the actual addresses.

The choice of relative or absolute addressing is se-

lectable in the EEXIST API. It turns out though this distinc-

tion is immaterial: the introduction of bias (discussed later

in this chapter) allows the emulation of relative address-

ing using absolute addressing. Unless stated otherwise, all

addressing is absolute throughout this text.

5.5.2 Transfer Type

Karma (and Dκ(x, p)) and the choice of transfer addressing

(absolute or relative) determine the final SRC and DST

addresses of a transfer. Once those addresses have been

determined, there are two ways in which the actual transfer

can take place:

50
Chapter 5. EEXIST:

A Model for an Enhanced ZBC
1. “SD flow,” which specifies a flow rate from SRC to

DST based on the amount of SRC chemical; and

2. “Equilibrium flow,” which modulates the flow rate

based on the difference in the amount of chemicals at

SRC and DST.

The main difference is that SD flow will eventually drain

the SRC location, whereas equilibrium flow will eventually

cause the chemical levels at SRC and DST to be the same.

The choice of transfer type is selectable in the EEXIST

API, though almost all work to date has been done under an

assumption of SD Flow.

5.5.3 Main Simulation Loop

The basic simulation update loop proceeds as follows:

1. Look at each transfer instruction from p = 0 to p =
40; suppose MEM[p] : MEM[SRC]→ MEM[DST];

2. calculate the corresponding change to MEM[SRC]
and MEM[DST]. For SD flow, the equations are:

• ∆MEM[SRC] = −MEM[SRC] ∗Dκ(x, p) ∗∆t ∗
∆x

• ∆MEM[DST] =MEM[SRC]∗Dκ(x, p)∗∆t ∗∆x

For equilibrium flow, the equations are:

• ∆MEM[SRC] =−(MEM[SRC]−MEM[DST])∗
Dκ(x, p)∗∆t ∗∆x

• ∆MEM[DST] = (MEM[SRC]−MEM[DST])∗
Dκ(x, p)∗∆t ∗∆x

3. accumulate all these ∆’s, being careful not to let any

amounts go negative;

4. after evaluating all transfer instructions, apply the

accumulated ∆’s to each memory location.

Remember that MEM[x] has 2 values associated with

it: a SRC amount and a DST amount. So each ∆ calcu-

lated above (for example, ∆MEM[SRC]) describes a pair

of changes: a change to the amount of SRC chemical at

MEM[SRC] and a change to the amount of DST chemical

at MEM[SRC].
Figure 5.6 (a) shows an example of an absolute SD

transfer operation. The instruction at MEM[5] specifies the

5.5 Simulation Mechanics 51

transfer MEM[2] → MEM[10]. Assuming for simplicity

κ = 0 (so Dκ(x, p) = 1 ∀x, p), ∆x = .1 and ∆t = .1, this

single instruction requests a transfer of 8∗1∗ .1∗ .1 = .08

SRC from MEM[2] to MEM[10], and a transfer of 9 ∗ 1 ∗
.1∗ .1 = .09 DST from MEM[2] to MEM[10], resulting in

the concentrations shown in figure 5.6(b).

Figure 5.6: Sample Set of Transfer Requests. (a) shows an

initial configuration, where MEM[5] specifies a transfer from

MEM[2]→ MEM[10]. (b) shows the results of that single trans-

fer in absolute, SD flow mode with κ = 0. Locations 2 and 10 also

specify transfer requests, but the effect of those are not shown.

Note the following:

1. Figure 5.6 only shows the effect of the instruction at

MEM[5]; the instructions at MEM[2] and MEM[10]
also affect memory.

2. The instruction at MEM[5] does not affect the con-

tents of MEM[5]. The SRC and DST chemicals only

specify where a transfer should take place; those

chemicals are not directly affected by the transfer,

52
Chapter 5. EEXIST:

A Model for an Enhanced ZBC
unless the instruction (perhaps taking karma into ac-

count) refers to its own address.

Assuming absolute addressing and SD flow, this will

transfer SRC and DST chemicals from location 2 to loca-

tion 10. Under equilibrium flow, this would transfer SRC

chemicals from 2 to 10, and DST chemicals from 10 to 2.

With relative addressing, the instruction requests transfers

from 7 to 15 (5+2 to 5+10).

5.6 Effect of Karma

It’s interesting to look at the effect of changing κ on the

behavior of the system. For this analysis, a configuration

that implements a 3 input exclusive-or (XOR) gate was em-

ployed. The nature of the results shown here seem typical

though, regardless of the specific system configuration. Fig-

ures 5.7 - 5.18 show the chemical distribution in this system

after a number of timesteps have passed, for different values

of κ .

A nominal value of κ = 5 has been used for most work

to date. There’s no particular reason for this choice; it was

simply the initial choice, and it just hasn’t changed. Figure

5.7 shows the chemical balance in the evolved XOR system.

The distribution is stable: it does not change over time,

unless the chemical balance is perturbed from outside the

system.

In figure 5.8, κ has been increased to 6. The chemical

balance changes, and the system stabilizes again.

Similar behavior is observed as κ changes to 8 (figure

5.9 and 15 (figure 5.10.

At κ = 25 (figure 5.11), the chemical distribution be-

gins to flatten out. While still stable over time, a small

perturbation can be seen near the left end of the system.

When κ increases to 27 (figure 5.12), the perturbation

seen in figure 5.11 begins to change. Figure 5.12 shows two

snapshots of the system at different points in time.

At κ = 30 (figure 5.13), multiple small regions are

changing between two states.

5.6 Effect of Karma 53

Figure 5.7: System Behavior With κ = 5. The chemical balance

is stable, unchanging as the simulation is advanced.

Figure 5.8: System Behavior With κ = 6. The chemical balance

has changed from κ = 5 but has stabilized again.

As κ continues to increase, the chemical balance changes

to a series of peaks and troughs, which shift in position over

time (figures 5.14 (a)-(c)).

Figure 5.15 shows the system when κ = 40. The behav-

ior is the same as that shown in figure 5.14, but the shape of

the peaks has become more uniform.

These behaviors are not entirely unexpected. The me-

chanics of EEXIST instruction interpretation basically link

cause to effect; karma (κ) allows those effects to come

back and affect the cause. This allows the creation of feed-

back, which one typically expects to lead to either stability

54
Chapter 5. EEXIST:

A Model for an Enhanced ZBC

Figure 5.9: System Behavior With κ = 8.

Figure 5.10: System Behavior With κ = 15.

(as seen when κ is between say 5 and 25) or oscillation

(κ > 25).

It is also interesting to look at what happens as κ ap-

proaches 0. Figure 5.16 shows the system with κ = 2. Here,

the chemical balance is beginning to change over time.

At κ = 1, the system looks non-periodic. Figure 5.17

(a)-(d) shows 4 snapshots of the system at different (not

immediately-successive) timesteps.

When κ = 0 the system looks fundamentally differ-

ent, and appears very disorganized and random (possibly

chaotic?). Figure 5.18 (a)-(d) show 4 snapshots of the sys-

tem, with no obvious patterns in the chemical balance.

This behavior is also not entirely unexpected: without

5.7 Bias, Diameters 55

Figure 5.11: System Behavior With κ = 25. The chemical dis-

tribution seems to be flattening out, but a small perturbation

appears near the left.

any feedback in the system, each instruction modified the

system’s chemical balance, but all instructions act entirely

on their own, without any direct consequence on themselves.

One might expect this to lead to a large number of seemingly

unrelated changes, which is one way of interpreting figure

5.18.

5.7 Bias, Diameters

There are two useful embellishments to the above mech-

anisms for EEXIST. One allows an offset (“bias”) to be

applied to each location; the other allows specification of a

flow restriction (“diameter”) to each location.

Bias is a set of pairs of offsets (Bias.SRC and Bias.DST)

which are added to the SRC and DST locations specified

by an instruction. Normally, Bias(x) = 0 ∀x, meaning an in-

struction such as MEM[2]→ MEM[10] refers to addresses

(centered at) 2 and 10. If that instruction is itself stored at

address 5 (as in figure 5.6 (a)), and Bias.SRC(5) = 20 and

Bias.DST (5) = −1 then the instruction actually requests

a transfer MEM[2+ 20] → MEM[10− 1]. As mentioned

above, Bias can be used to emulate relative addressing in an

absolute-addressed system: by setting Bias(x) = x ∀x, the

56
Chapter 5. EEXIST:

A Model for an Enhanced ZBC

(a)

(b)

Figure 5.12: System Behavior With κ = 27. Figures (a) and (b)

show two states between which the system alternates.

SRC and DST specified by a transfer instruction are added

to the address of the instruction, thereby acting as if they

were relative addresses.

Diameter(x) specifies a relative flow metric for each spa-

tial location. In a transfer from MEM[SRC]→ MEM[DST],
the final flow (based on Dκ , ∆x, ∆t, etc.) is multiplied by

Diameter(SRC)∗Diameter(DST). Normally, Diameter(x)=
1 ∀x. Setting Diameter < 1 causes less of a flow rate than

normal; setting Diameter = 0 causes no flow to occur. Note

that since Diameter(SRC) and Diameter(DST) are multi-

plied, setting either to 0 stops any flow between MEM[SRC]
and MEM[DST]. This is useful, for example, in specifying

5.8 Exercises 57

(a)

(b)

Figure 5.13: System Behavior With κ = 30. Multiple regions are

changing across time.

input regions, whose chemical levels are set by external

sensors. Such regions can still affect other regions of the

system, but the chemical levels in those regions themselves

do not change under transfer requests from inside the sys-

tem. This will be discussed further in Part II.

Note that a negative diameter could theoretically be used

to reverse the direction of chemical flow: this has not been

explored so far.

5.8 Exercises

1. Sketch a distribution of SRC and DST chemicals to

transfer all chemicals from [0,4) to [20,24), assuming

58
Chapter 5. EEXIST:

A Model for an Enhanced ZBC

(a)

(b)

(c)

Figure 5.14: System Behavior With κ = 35. The chemical balance

shows a series of peaks and troughs, whose positions shift over

time.

κ = 0.

5.8 Exercises 59

Figure 5.15: System Behavior With κ = 40.

Figure 5.16: System Behavior With κ = 2. The chemical balance

is changing over time.

2. Repeat the above, but with κ = 4. How does the

system differ from the case where κ = 0? What as-

sumptions do you need to make?

3. What would be the general effect on the system if

κ < 0?

4. What is the general effect of setting SRC = DST ?

5. What is the effect of setting BIASSRC = BIASDST =
C where C is a constant? What if instead of being

constant, C is the location where the biases are being

set, i.e. at any location x, BIASSRC = BIASDST = x?

60
Chapter 5. EEXIST:

A Model for an Enhanced ZBC

(a) (b)

(c) (d)

Figure 5.17: System Behavior With κ = 1. Figures (a)-(d) show 4

different timesteps. The system is changing over time, but doesn’t

appear to be periodic.

Figure 5.18: System Behavior With κ = 0. (a)-(d) show 4 snap-

shots of the system’s chemical balance. Without the effects of

karma, the system is running essentially open-loop, with each

instruction modifying the system but acting independently from

all other instructions.

II
6 Overview, Links to Software 63

7 Digital Logic . 69

8 Tic tac Toe . 81

9 A Lunar Lander Controller 95

10 Ecosystem . 107

Part Two - Experiments

6. Overview, Links to
Software

With any proposed architecture, a natural question is: “what

can one do with it?” While EEXIST was developed as an

extension of more traditional computing systems, it’s not

immediately clear how to do anything “useful” with this sys-

tem. Constructing individual transfers is simple (provided

karma is ignored), but since all transfers occur simultane-

ously, orchestrating a sequence of actions seems difficult.

While some work has been done in setting up rudimentary

behaviors (nominal cyclic changes, for example), general

schemes for configuring EEXIST for specific behaviors

have yet to be discovered.

One of the early lessons in this search was that the

balance of chemicals is only part of the story. In trying

to configure a system that, for example, can perform logic

operations, finding a particular configuration of chemicals

that leads to the desired behavior is difficult. This led to the

introduction of bias and diameter, described at the end of

Part I.

64 Chapter 6. Overview, Links to Software

At that point, rather than trying to explicitly design con-

figurations for certain behaviors, an evolutionary approach

was adopted: using genetic algorithms to discover configu-

rations, rather than engineering those configurations. This

approach has been used for all the work presented in the

experiments in Part II.

It is important to remember that at this point, the main

goal of this work is to explore and understand what EEXIST

is capable of. Even though an evolutionary approach has

been employed, this is not fundamentally research about

evolvable systems or GAs. The goal is to see what behaviors

EEXIST can exhibit.

6.1 Software Setup

6.1.1 Links

While this book is intended to primarily stand by itself,

there are references to software (mainly on GITLab) and

web pages throughout the discussion of experiments. These

can be clicked-on directly in the PDF version of this text.

For the printed copy, the reference numbers (e.g. [1]) refer

to links on http://book.songlinesystems.com (which means

you don’t need to copy long URLs from the text).

All this code is built on top of an API [20] which pro-

vides access to a full EEXIST simulator, including graphi-

cal displays of system activity. There is standard JavaDoc

available for this API here [21]. More generally, the GIT

repository for the API is available here [22]

A more-general webpage that includes links to videos

discussing the EEXIST API is available here [23].

The root of the entire GIT repository is available here

[24], and contains not only the API but also the code and

data for all experiments described in this text.

6.1.2 General Code Organization

Within each directory of the GIT repository (e.g. EA2),

there are a number of files:

http://book.songlinesystems.com
https://gitlab.com/nickmacias/ChemComp/blob/master/ChemCompAPI/API_V1/api.jar
http://songlinesystems.com/APIJavaDoc/
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/API_V1
http://songlinesystems.com/eexist-api.html
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI

6.1 Software Setup 65

• README which often (but not always) contains help-

ful information about the contents of the directory;

• raw.txt and variations thereof. These usually contain

genome information for individuals in evolving pop-

ulations. The file is human-readable, but not easily

(it’s really a .CSV file). raw.txt is often tagged with

additional information inside the filename itself (e.g.

raw.xor.5.22.txt is the raw.txt from evolving an XOR

gate, and individual 22 generation 5 is considered

noteworthy for some reason);

• various human-readable files containing output from

past runs, sometimes following manual processing;

• various scripts for monitoring output as it’s being

generated (especially for the tic tac toe work);

• classes Gene and Genome which handle the basic

genetic aspects of individuals;

The Java code is built on top of the EEXIST API, and

uses the Gene and Genome classes. Beyond that, the code

is problem-specific, but there is a common structure to the

code, comprised of the following pieces:

• a pair of scripts (“c” and “r”) for compiling and run-

ning Java code, respectively;

• a set of code for running the evolutionary part of the

system, i.e. for developing a population that performs

well according to some criteria. This consists of the

following code:

– Main.java which is the main class for the evolu-

tion process; and

– Core.java which contains the particular code for

the experiments related to this directory.

• a set of code for analyzing the evolved population.

This code generally reads from a raw.txt-type file

to clone from saved genetic information into a test

EEXIST system, and allows the user to interact with

that EEXIST system in various ways. Typical pieces

include:

– Analyze.java which is the main class (analogous

to Main.java)

66 Chapter 6. Overview, Links to Software

– AnalyzeCore.java which contains the particu-

lar code for analyzing the results of this set of

experiments (analogous to Core.java); and

– AnalyzeControl.java which contains code re-

lated to user-interactions with the cloned EEX-

IST system.

• a set of .jar files if the experiments require interaction

with a server (e.g. LL.jar for simulating the lunar

lander game, and VEco.jar for simulating the virtual

ecosystem).

6.2 Genetic Setup

Early attempts at evolving EEXIST systems didn’t work

very well. Part of this seemed to be related to the “spe-

cial nature” of certain areas of the memory. As chemicals

are drained from tubes, the instructions referenced by such

tubes refer to smaller and smaller SRC and DST addresses;

whereas upper addresses (e.g. close to 40) are rarely refer-

enced unless a tube is very full. The larger issue may have

been that chemicals were serving two purpose, being used

both for inputs/outputs and for somehow coding the genetic

signature of an individual. It is in light of this latter con-

sideration that further parameters were introduced into an

individual’s genome, in order to foster a genetic signature

independent of SRC/DST chemical levels in the system.

The basic genetic structure consists of a partition of

EEXIST’s address space (currently [0,40]) into a set of in-

tervals (called “genes”), and within each gene, having some

sort of coded variation of chemical levels (SRC and DST),

biases (again SRC and DST) and diameters. The original

vision for this allowed a number of different codings: fixed

levels, linearly-changing levels, levels described by sinu-

soidal functions, and so on. The first implementation of a

gene used a simplified version of this, consisting of just the

following:

• a specification of a single variable: either chemical

amounts, bias amounts or diameter;

6.3 Exercises 67

• an initial value for the chosen parameter at the begin-

ning of the gene’s region; and

• the slope of the linear change in the parameter across

the gene.

Provisions were made to allow genes to have a variable

size, and to allow for a small amount of random variation in

each of these parameters.

In practice though, only the bias amounts were modu-

lated as part of a system’s genetic signature. Additionally,

all genes are the same length (4), and no variation from

the specified linear change was allowed within each gene.

Thus, each gene is comprised of a pair of bias gradients,

and the entire genome is a set of 10 such equally-sized bias

gradients.

Genes can be initialized with random values, or can be

cloned from existing genes.

Mating occurs by simple point-by-point averaging of

values (bias, etc.) from each parent. Mutation occurs (on

a gene-by-gene basis) parameter-by-parameter: a random

value is generated, and if it is less than the given mutation

rate (e.g. 10%), then the parameter is scaled by a random

amount between 0.5 and 1.5.

Most GA experiments involve an initial randomly-generated

population of individuals. Each individual is assessed on

some set of tasks, and scored based on its performance.

The top n (typically 10) individuals are retained verbatim

in the next generation, while all other individuals are re-

moved. The survivors are randomly mated pairwise (with a

possibility of mutation) to create the next generation.

6.3 Exercises

1. Use API calls to set up an EEXIST system that is

configured to do a single transfer. Run the code and

observe the behavior in the graphical displays.

2. Use the API calls to configure an EEXIST system

with a random initial configuration. Introduce more

chemicals into the system and observe how the chem-

68 Chapter 6. Overview, Links to Software

ical balance changes over time. What sorts of behav-

iors can you produce?

3. Change the karma in the system while running the

above experiments.

4. Look at the code for Genome.java and Gene.java.

Where is mating performed? How would you change

the code to select genes from one parent or the other

instead of averaging them? How is mutation intro-

duced? What controls the number of genes?

5. How can you change this code to use something other

than bias gradients as the genetic signature of an indi-

vidual?

7. Experiments in Digital
Logic

7.1 Basic Setup

The basic goal in this set of experiments was to develop

EEXIST configurations that perform digital logic functions.

The general setup for each of these experiments was roughly

the same:

• space extends from coordinates 0.0 to 40.0, with ∆x=
.0625;

• a maximum value of 40 (for each of SRC and DST)

is imposed throughout the memory;

• individuals are distinguished by their genome, which

consists of 10 regions of bias gradients, evenly spaced

between 0 and 40;

• an initial population of 250 individuals is generated

with random bias gradients;

• as each individual is loaded into EEXIST (one at a

time), its input-to-output behavior is monitored, and

compared to the desired function;

• inputs are fed in the regions [0,4], [8,12] and [16,20];

70 Chapter 7. Digital Logic

• an input of 1 is coded as a value of SRC = DST = 20;

an input of 0 is coded as a value of SRC = DST = 5;

• all other locations are initially devoid of chemicals;

• the region [24,28] is considered the output region.

Chemical levels at each location in this region are

translated to a logic value: a chemical level of SRC+
DST ≥ 15 is considered a logic 1; SRC+DST < 10

is considered logic 0; anything else is considered

invalid;

• an individual’s score is incremented for each location

in the output region (stepped by ∆x = 0.0625) with

the correct logic level;

• after injecting input chemicals, the system is stepped

for 50 steps;

• the system is then stepped an additional 25 steps,

during which the output is monitored;

• for each address within the output region, the indi-

vidual’s score (initialized to 0) is incremented if the

output has the correct value. Since the output region’s

width is 4 and ∆x = 0.625, there are 64 addresses in

the output region, yielding a maximum score incre-

ment of 64 per timestep. Across 25 timesteps, this

gives a maximum increment of 1600 per test;

• for a 3-input system, all 8 possible input combinations

are tested; this gives a maximum total score of 12,800.

• after all individuals have been assessed, the top 10

are selected as survivors;

• pairs of randomly-selected survivors are mated by

averaging the start and gradient of each bias region,

until the new population is 250;

• a 5% mutation rate is applied to mating.

During the evolutionary process, the genome of each

individual is written to a raw output file (raw.txt). This

allows individuals to be reconstructed for later testing.

The main code for the logic gate tests can be found

on https://gitlab.com/nickmacias/ChemComp/tree/master/

ChemCompAPI/EA2 [4].

https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA2
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA2

7.2 3-Input Exclusive Or Gate 71

7.2 3-Input Exclusive Or Gate

The first target circuit was a three-input XOR gate. This

is, in some ways, an easier target circuit than an AND,

OR, NAND or NOR gate. An AND gate, for example,

produces a 0 in 87.5% of all test cases: so a NOP system

(one that always outputs 0) would still score 11200 out of

12800. Thus, a NOP circuit (one which never transfers

any chemicals into the output zone) might out-perform a

promising but not-yet-fully-evolved AND gate.

Surprisingly, EEXIST evolved a perfect XOR gate in

only 5 generations! Individual 22 in generation 5 scored a

perfect 12800/12800 across all 8 possible input combina-

tions. Figure 7.1 shows the bias gradients for this individual.

Each triple of vertical lines shows an input or output region.

SRC bias is in red (the upper region, at the top of the graph),

DST bias is in blue (the lower region). BIAS = 0 at the top

of the graph, with BIAS increasing towards the bottom. For

reference, the titlebar shows the SRC and DST bias values

at the point indicated by the cursor arrow (which is gener-

ally the point in the graph where BIASSRC +BIASDST has

its maximum value). These conventions are used anytime

a bias graph is shown.

7.3 Nand Gate

The next evolve target was a 3-input NAND gate. A perfect

system emerged during the 9th generation (individual 19).

The raw file (raw.nand.10.0.txt) contains the genome for

each individual. Figure 7.2 shows the bias gradients for a

perfect individual.

7.4 Nor Gate

The next target circuit was a 3-input NOR gate. This was

expected to be the most challenging of the three logic gates,

because a NOR gate almost always outputs 0, so a circuit

that never transfers chemicals to the output region would

score 87.5%. This means an actual NOR circuit will need

72 Chapter 7. Digital Logic

Figure 7.1: Bias Gradient For a Perfect XOR Gate. Source bias

is colored red, in the region near the top of the graph; destination

bias is colored blue, and shown below the source region. Bias

has a value of 0 at the top of the graph, and increases towards

the bottom. For reference, the cursor (where BIASSRC +BIASDST

has its maximum value) shows a point where BiasSRC = 16.57

and BiasDST = 15.08. Each triple of vertical bars represents an

input or output region.

Figure 7.2: Bias Gradient For a Perfect Nand Gate. Source bias

is colored red; Destination bias is colored blue. Values at the

cursor are BiasSRC = 12.44 and BiasDST = 18.23.

to score higher than this to compete with NOPs. This is

significantly more challenging than a NAND gate, where a

NOP circuit will score 12.5%.

A perfect system emerged during the 56th generation

7.5 Frequency Discrimination 73

(individual 212). This took 5 times longer to evolve than

a NAND gate, and 10 times longer to evolve than an XOR

gate. The raw file (raw.nor.56.212.txt) contains the genome

for each individual. Figure 7.3 shows the bias gradients for

a perfect individual.

Figure 7.3: Bias Gradient For a Perfect Nor Gate. Source bias

is colored red; Destination bias is colored blue. Values at the

cursor are BiasSRC = 19.27 and BiasDST = 23.06.

7.5 Frequency Discrimination

Given that EEXIST seems to be configurable to perform

logic operations, the next task was to see if it could respond

to varying inputs over time. This test took the form of a fre-

quency discriminator (possibly inspired by Adrian Thompson’s work

[6]). The main code for the frequency discriminator tests

can be found on https://gitlab.com/nickmacias/ChemComp/

tree/master/ChemCompAPI/EA3 [5]. raw1000 contains the

history of individuals’ genomes for this experiment.

The idea was to define an input region, and toggle the

input at one of two frequencies, hoping to generate an output

of 1 or 0 based on the input frequency. The test setup was

as follows:

• κ = 5;

• Two input frequencies are considered:

– high frequency changes every 4 timesteps

https://www.researchgate.net/publication/2737441_An_Evolved_Circuit_Intrinsic_in_Silicon_Entwined_With_Physics
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA3
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA3

74 Chapter 7. Digital Logic

– low frequency changes every 8 timesteps

• The input region is [0,4]: logic 1 is SRC = DST = 20;

logic 0 is SRC = DST = 5;

• The output region is [24,28]: chemical levels at each

location in the output region (stepped by ∆x = .0625)

are translated to logic levels: SRC +DST > 15 is

interpreted as logic 1; SRC +DST < 5 as logic 0;

anything else is an undefined logic level;

• an individual’s score is incremented for each output

that is at the correct logic level. This means a maxi-

mum possible increment of 64 per timestep;

• The input is supplied for an initial 64 timesteps;

• for the next 1000 timesteps, the output is analyzed as

the input continues to toggle;

• The output goal is 0 for high-frequency input, 1 for

low-frequency input;

• a perfect score is 64×1000 steps ×2 tests = 128000;

Evolution proceeded slowly, since each individual re-

quired 1064 timesteps per test. Nonetheless, after 8 gen-

erations, a near-perfect individual emerged (individual 37)

with a score of 127009/128000. Despite the imperfect score,

all the errors were in the first 19 timesteps: meaning the last

981 timesteps were perfect across the entire output region

(subsequent timesteps were also perfect). While further

evolution might have resulted in a perfect score under the

original criteria, the original requirements (initialization of

64 timesteps, followed by a test period of 1000 timesteps)

were essentially arbitrary, and thus the obtained result (ini-

tialization of 83 timesteps followed by a test period of 1000

timesteps) was deemed “good enough.”

Figure 7.4 shows a display of the test results. In this dis-

play, time is drawn vertically (top-to-bottom, then wrapping

back to the top), and space horizontally. SRC/DST amounts

are color-coded (SRC is red, DST is blue). The intensity of

each color reflects the amount of chemicals at that position

in space and time. Since SRC = DST throughout, the only

color is different intensities of purple.

The vertical lines delimit the input and output regions.

7.5 Frequency Discrimination 75

Figure 7.4: Space (x) and Time (y) Display of Frequency De-

tection Test. Time runs from top to bottom (and re-wraps to the

top). Intensity relates to chemical amounts. The input region is

on the left, and reflects the periodic input at a high (top half) or

low (bottom half) frequency. Output appears towards the right

(between the two vertical lines) and shows the desired output of 0

for a high frequency input, and 1 for low frequency.

The input region (on the left) shows the alternation between

high and low chemical levels: this reflects the input signal,

which has a high frequency in the top of the display, and a

low frequency in the bottom. The output region (marked by

two vertical lines near the right of the display) shows the

corresponding output:

• In the top of the display, the output is low. While faint

traces of the input pattern are visible, the chemical

amounts translate to a clean logic 0 throughout the

test.

• When the input frequency switches to low (approx-

imately halfway down the display), the output first

goes low (dark), but then raises to a high level (bright

purple) for the remainder of the time to the bottom of

the display.

Figure 7.5 shows the bias gradients associated with this

76 Chapter 7. Digital Logic

individual.

Figure 7.5: Bias Gradients for Individual 37, Generation 8. Val-

ues at the cursor are BiasSRC = 17.90 and BiasDST = 13.66.

7.6 Frequency Generation

The final experiment in this set of digital logic-related be-

haviors was to evolve a circuit that generates an oscillating

output. The setup was similar to other experiments, with a

few subtle differences:

• The input region was [0,4] and the output region was

[24,28];
• The system was stimulated for 16 timesteps by setting

the SRC = DST = 20 throughout the input region;

• For the next 1000 steps, the output region was moni-

tored. In this case, the average chemical level (SRC+
DST) was calculated across the region, and an aver-

age of 15 or more was considered a logic 1, otherwise

the output was considered logic 0;

• An individual’s score was incremented any time the

output changed. Across 1000 timesteps, the maxi-

mum possible score would thus be 1000.

The code and files for this experiment can be found

on https://gitlab.com/nickmacias/ChemComp/tree/master/

ChemCompAPI/EA5 [7]. The file “raw” contains the genome

https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA5
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA5

7.7 Another Look at Karma 77

history for each individual in this experiment. After 4 gen-

erations, individual 90 earned a score of 224, representing

on average an output change every 4 timesteps. This was

considered successful enough to conclude the experiment.

The output from this system is shown in listing 7.1:

Listing 7.1: System Output, Generation 4, Individual 90

10000000000000000000000000011110000000000000001111

10000000000000000000001100000000011000000001000000

00100000001000000001000000010000000010000000110000

00010000000110000000100000001100000001000000011000

00001000000011000000010000000100000000100000001100

00000100000001000000001000000011000000010000000100

00000010000000100000000100000001100000001000000010

00000001000000010000000010000000110000000100000001

10000000100000001100000001000000011000000010000000

11000000010000000100000000100000001100000001000000

01100000001000000010000000010000000110000000100000

00110000000100000001000000001000000010000000010000

00011000000010000000100000000100000001100000001000

00001100000001000000011000000010000000100000000100

00000100000000100000001100000001000000010000000010

00000011000000010000000110000000100000001100000001

00000001100000001000000011000000010000000110000000

10000000110000000100000001100000001000000011000000

01000000011000000010000000110000000100000001100000

00100000001100000001000000011000000010000000110000

Figure 7.6 shows the display-view output of this run (the

display is similar to figure 7.4). As usual, the input region

is at the left, and the output is between the yellow vertical

lines towards the right. As can be seen (though not easily

in the printed version of this figure), after the initial input,

the input region is mostly devoid of chemicals, while the

output region begins to toggle between high and low shortly

thereafter.

Figure 7.7 shows the bias gradients for this same indi-

vidual.

7.7 Another Look at Karma

Before moving on to the next set of experiments, it’s in-

teresting to re-visit the effect of karma (κ) on the system:

in particular, to see if evolution is possible without karma.

Figure 7.8 shows the results of an experiment designed to

explore this. The system is trying to evolve a 3-input XOR

gate, using the usual general- and survivor-population sizes

(250 and 10), genome structure, etc. With κ = 0, the system

78 Chapter 7. Digital Logic

Figure 7.6: Display Window for Generation 4, Individual 90. The

system is seeded with a dose of chemicals in the input region (left

side). Shortly thereafter, the output region (to the right of center)

begins to toggle between high and low amounts of chemicals. The

output toggles 224 times during 1000 timesteps (not all timesteps

are shown).

Figure 7.7: Bias Gradients for Individual 90, Generation 4. Val-

ues at the cursor are BiasSRC = 14.35 and BiasDST = 21.12.

runs for over 1000 generations, achieving a most-fit individ-

ual with a score of 56% (i.e., it gives the correct result in

56% of the test cases). Remember that a NOP – a circuit

that always outputs 0 – will achieve a score of 50%. Hence

7.8 Exercises 79

the best individual after 1000 generations is performing

barely better than a circuit that always outputs 0.

Figure 7.8: Effect of Karma on Evolution of an XOR Gate. κ is

initially set to 0 and the system runs for over 1000 generations.

Evolution fails to produce an XOR gate that behaves much better

than a NOP. When κ is changed to 5, the system quickly evolves

an almost-perfect XOR in just a few generations.

During generation 1079, κ is changed to 5. Within the

current population at the time of the change, one individual

already performs at around 57%. Within 10 generations, the

best individual is performing above 90%; and after another

21 generations, the best individual is at 99%. Thus karma

seems to have a beneficial impact on evolvability.

7.8 Exercises

1. Run the Analyze code on the file raw.xor.5.22.txt,

and test individual 22, generation 5. Confirm that it

functions as an XOR.

2. Analyze individual 0, generation 1. Compare its be-

havior to the above.

3. Look at the raw file, find the entry for individual 22

generation 5, and compare the data in the file with the

bias gradients shown in the simulator.

4. How fragile are the bias gradients? Can you truncate

to 6 digit and still get an OR? 4 digits? 2 digits?

80 Chapter 7. Digital Logic

5. Try evolving an XOR with truncated bias gradients.

6. Change the code to evolve an XNOR (look for code in

Core.java around the comment that says “Test Func-

tion Here”). Run the analysis code to confirm your

system performs an XNOR.

7. Try evolving with different values of κ . Try values

such as 10, 20, 30 and 40.

8. Try evolving some nonstandard logic functions.

9. Try evolving a 4-input gate.

8. A Tic Tac Toe Player

Following a series of experiments in emulating behavior

related to digital logic, the next series of experiments cen-

tered around seeing if EEXIST could learn to play tic tac

toe. A number of experiments were performed, with a lot

of variation in setup, fitness assessment, scoring, and so on.

The system quickly proved able to play a game of tic tac

toe; was able to perform better than a random opponent,

and was able to sometimes make good moves against an

expert opponent; but it never evolved to where it could play

without losing. The reasons for this will be discussed below.

The code and files for these experiments can be found

on https://gitlab.com/nickmacias/ChemComp/tree/master/

ChemCompAPI/EA6 [8].

8.1 Setup

The basic setup for all experiments was similar:

• The board is viewed as a grid of 9 squares, numbered

https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA6
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA6

82 Chapter 8. Tic tac Toe

as in figure 8.1;

• Each square also corresponds to a region in the EEX-

IST address space: region 1 is [0,4); region 2 is [4,8)
and so on, up to region 8 which is associated with ad-

dresses [32,36). These are considered output regions;

• All 9 of these regions are initially devoid of all chem-

icals;

• The region [36,40] is used to start the system and

evoke EEXIST’s first move (EEXIST always goes

first in these tests). To start the system, the region

[36,40] is filled with SRC = DST = 15;

• The system is then stepped, and the output regions are

monitored for a move request (average of SRC+DST

≥ 10). If a region which isn’t yet marked on the board

signals a move request, that is considered EEXIST’s

move. The square is given EEXIST’s mark, and it

becomes the opponent’s turn;

• Once the opponent has selected a move, it is indicated

to EEXIST by saturating the selected region with

SRC = DST = 15 (the same as for the initiation in

[36,40]);
• Play continues until someone wins, or there are no

spaces left (in which case the game is a draw).

Note that no check is made to prevent illegal moves by

the opponent.

There is a maximum number of timesteps the system

will wait for EEXIST to move (typically 250 steps). If no

move is detected in that time, EEXIST is considered to have

forfeited.

The genetic algorithm was run with an initial popula-

tion of 250 random configurations, a survivor size of 10

individuals, and a mutation rate of 5% (the same as in the

digital experiments). The genome was again a set of 10

evenly-spaced bias gradients. Mating was performed by

averaging the parents’ biases, point-by-point.

EEXIST was always “X” and the opponent was always

“O” (this doesn’t affect anything, but is useful to know when

one is looking at the code).

8.2 Goals 83

0

[0,4)

a

1

[4,8)

b

2

[8,12)

c

3

[12,16)

d

4

[16,20)

e

5

[20,24)

f

6

[24,28)

g

7

[28,32)

h

8

[32,36)

i

Figure 8.1: Layout of Tic Tac Toe Board. Regions denoted [x0,x1)
are the EEXIST address range associated with that square. In-

dexes 0 through 8 are used internally in the code; letters “a”

through “i” are used in playing an interactive game.

A lot of output was generated during these evolutionary

runs. Besides writing the genome of each individual (the

“raw...” files), a graphical display of the board was also

produced. This was usually saved to a file, and read offline.

This was also the first set of experiments to be run on

an external server. Since the server had no X interface, a

headless version of the code was produced (these are the

“...HL” variants of the directories).

8.2 Goals

It’s important to remember that the overarching goal of this

work is not to play tic tac toe (a simple BASIC program will

do that); nor is it to study genetic algorithms or evolvability

per se. Rather, the goal is to learn what types of behaviors

EEXIST is capable of, to better understand its capabilities

and limitations. With that in mind, trying to evolve a system

that plays tic tac toe seemed an interesting endeavor; and as

usual, rather than trying to manually engineer EEXIST to

do this, an evolvable approach was explored.

The immediate goal was, as always, to evolve individu-

84 Chapter 8. Tic tac Toe

als with higher and higher fitness measures. However, there

are a number of possible ways to assess fitness. For exam-

ple, the following are all slightly different goals for a tic tac

toe playing system:

• play better than a random opponent;

• play better than an “average” opponent;

• win more than you lose;

• never lose (but possibly draw sometimes);

• play a perfect game

An exact understanding of the goal(s) will help define

the fitness metric. However, there are tensions among the

above goals:

• training against random opponents may lead to a sys-

tem that scores well, i.e., has a great fitness measure,

but fails miserably against a skilled opponent. For

example, winning 90% of all games against random

opponents might still allow for 100% loss against a

skilled opponent.

• training only for wins ignores the fact that not all

games are winnable. By moving first, one can be

guaranteed to never lose, but a skilled opponent can

always force a DRAW. Therefore, if training against

a perfect opponent, one would never see a single win.

This intuitively goes against the idea of penalizing

DRAWs.

• If the system is trained against every possible game,

and WIN is ranked higher than DRAW, it’s possible

a system that is undefeatable by a perfect opponent

might not score as well overall as one that wins many

games against imperfect opponents.

In many cases, the system seemed to gravitate towards

local maxima, tending to find excellent performers among

groups of sub-optimal individuals.

Scoring was based on the outcome of each game, with

the following possibilities:

• winning;

• losing;

• ending in a draw; and

8.2 Goals 85

• forfeiting (no move made),

along with the following intermediate metrics:

• failing to take a winning move when presented with

the possibility; and

• failing to block an opponent’s winning move when

presented with the possibility.

Different scoring metrics were used, based on the above

measures. For example:

• WIN =+5

• DRAW =+2

• LOSE =−1

• FORFEIT =−∞

Forfeiting was always treated as immediate dismissal of

the individual (they were given a final score that was nega-

tive). This was largely due to practical concerns: whereas

many moves are made after only a few timesteps, forfeiting

means waiting (e.g.) 250 timesteps before giving up on

EEXIST’s making a move. This simply slowed down the

evolutionary process too much, hence such individuals were

quickly removed from the population by assigning them a

negative score.

Evolution depends on the nature of the population of

opponents:

1. in a totally random population, opponents make ran-

dom (legal) moves;

2. in a population of smart individuals, opponents make

winning moves if possible, but otherwise make ran-

dom moves;

3. in a population of smarter individuals, opponents

block EEXIST’s winning moves if possible, but oth-

erwise make random moves;

4. in a population of perfect individuals, opponents al-

ways play a perfect game (and thus never lose);

5. in an exhaustive population, all possible games are

played.

Of course, combinations of these (such as 2 and 3) are

possible.

86 Chapter 8. Tic tac Toe

8.3 Results

Directories from these runs are available on GITLab, gener-

ally in subdirectories underneath https://gitlab.com/nickmacias/

ChemComp/tree/master/ChemCompAPI In general, there

are two sets of code:

• Main.java and Core.java are the heart of the evolution-

ary system (along with support code: Game, Gene

and Genome);

• Analyze and AnalyzeCore are the counterparts to

Main and Core, but are used for analysis of individ-

uals (along with AnalyzeControl, plus Game, Gene

and Genome).

The evolutionary code displays gameplay while it runs,

but also writes a raw file of individuals’ genomes. This

file can be loaded into the analysis code, which allows the

user to play against an EEXIST-controlled opponent. In this

mode, the user specifies moves by naming the square (using

the letters shown in figure 8.1).

A number of different tests were run; only two are de-

scribed below.

8.3.1 EA7HL

The EA7HL directory contains the code and results for the

following test setup:

• 50 games per individual

• 250 timesteps maximum wait time for a move from

EEXIST

• Scoring: Win=2, Draw=1, Loss=0, Bad Move=-1

(where a “Bad Move” means failing to take a winning

move, or block an opponent from winning their next

turn)

• Final score is the simple sum of each game’s score

With 50 games, and a maximum score per game of 2

(for winning), the best possible score for an individual is

100. Against a well-trained opponent, the best possible

score is 50 (50 draws). The best individual in this set of

experiments (file “rawgood” generation 28 individual 0)

https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI

8.3 Results 87

scored 61. Figure 8.2 shows the bias gradients for this

individual.

This individual always moves in the middle square (“e”)

first. Based on the opponent’s first move, the outcomes are

as follows:

Figure 8.2: Bias Gradients For EA7HL, Individual 0, Generation

28. Values at the cursor are BiasSRC = 6.79 and BiasDST = 1.84.

• a: game is a draw (but if the user doesn’t block EEX-

IST, they can actually win)

• b: EEXIST finds 2 ways to win, and eventually wins,

as long as the user tries to block

• c: game is a draw (but if the user doesn’t block EEX-

IST, they can win)

• d: user ends up with a choice of 2 moves: one leads

to a win for the user, the other leads to a draw

• f: game is a draw

• g: game is a draw

• h: EEXIST finds 2 ways to win: blocking one leads to

EEXIST winning; blocking the other leads to a draw

• i: game is a draw

This set of experiments was the first clue to the system’s

sensitivity to training data. For example, when the user’s

first move is “a,” EEXIST eventually is one move from

winning: but if the user doesn’t block that move, EEXIST

may fail to take that move its next turn.

Figures 8.3 - 8.5 show three possible outcomes for this

88 Chapter 8. Tic tac Toe

initial user move. In 8.3, everyone plays as expected, and

the game is a draw. This is the expected behavior. In 8.4,

the user fails to block EEXIST from taking a winning move,

and in fact EEXIST wins on that next move. In 8.5, the user

blocks EEXIST the first time, but fails to block EEXIST’s

second possible winning move. In this case, EEXIST fails

to take that winning move, allowing the user to win on their

next turn.

 a|b|c O|b|c

 -+-+- -+-+-

 d|X|f d|X|f

 -+-+- -+-+-

 g|h|i g|h|i

1. EEXIST starts in the middle 2. User moves in upper-left

 O|b|c O|b|c

 -+-+- -+-+-

 d|X|X O|X|X

 -+-+- -+-+-

 g|h|i g|h|i

3. EEXIST moves in f and is 4. User blocks EEXIST in d

 ready to win

 O|b|c O|b|O

 -+-+- -+-+-

 O|X|X O|X|X

 -+-+- -+-+-

 X|h|i X|h|i

5. EEXIST blocks user in g 6. User blocks in c

 O|X|O O|X|O

 -+-+- -+-+-

 O|X|X O|X|X

 -+-+- -+-+-

 X|h|i X|O|i

7. EEXIST blocks in b 8. User blocks in h

 O|X|O

 -+-+-

 O|X|X

 -+-+-

 X|O|X

9. Game is a draw

Figure 8.3: Generation 28, Individual 0. If the user plays pre-

dictably (i.e. as a “smart” user would), the game will eventually

be a draw.

This illustrates some of the challenges of training the

system: if the training opponent always blocks, then EEX-

IST may be tripped up by an opponent who doesn’t block;

8.3 Results 89

 a|b|c O|b|c

 -+-+- -+-+-

 d|X|f d|X|f

 -+-+- -+-+-

 g|h|i g|h|i

1. EEXIST starts in the middle 2. User moves in upper-left

 O|b|c O|O|c

 -+-+- -+-+-

 d|X|X d|X|X

 -+-+- -+-+-

 g|h|i g|h|i

3. EEXIST moves in f and is 4. User does not block

 ready to win (moves in b instead of d)

 O|O|c

 -+-+-

 X|X|X

 -+-+-

 g|h|i

5. EEXIST takes the win

Figure 8.4: Generation 28, Individual 0. If the user fails to

block when EEXIST is one move from winning, EEXIST takes the

winning move and wins the game.

but if the training opponent misses some blocks, EEXIST

may score unreasonably high due to these overly-simple

games.

8.3.2 EA8HL

The “EA8HL” directory contains code and output for a se-

ries of experiments where EEXIST plays against all sets

of possible opponent moves. Specifically, for each move

EEXIST makes, every legal opponent move will be con-

sidered. In theory, since there are 9 squares, and EEXIST

moves first, there are 8 possible first moves by the opponent;

after EEXIST’s 2nd move, there are 6 open squares for the

opponent to choose from; and so on. Thus there are a max-

imum of 8× 6× 4× 2 = 384 possible games. In practice,

the number is fewer than this, since some of these games

may end before the opponent has made 4 moves.

An array (“moves[]”) is used to record the current set of

moves an opponent will make, and this is incremented after

each game. If a game ends before a total of 9 moves, the

90 Chapter 8. Tic tac Toe

 a|b|c O|b|c

 -+-+- -+-+-

 d|X|f d|X|f

 -+-+- -+-+-

 g|h|i g|h|i

1. EEXIST starts in the middle 2. User moves in upper-left

 O|b|c O|b|c

 -+-+- -+-+-

 d|X|X O|X|X

 -+-+- -+-+-

 g|h|i g|h|i

3. EEXIST moves in f and is 4. User blocks EEXIST in d

 ready to win

 O|b|c O|O|c

 -+-+- -+-+-

 O|X|X O|X|X

 -+-+- -+-+-

 X|h|i X|h|i

5. EEXIST blocks user in g 6. User does not block

 (moves in b instead of c)

 O|O|c O|O|O

 -+-+- -+-+-

 O|X|X O|X|X

 -+-+- -+-+-

 X|X|i X|X|i

7. EEXIST fails to take the win 8. User wins

 and moves in h instead

Figure 8.5: Generation 28, Individual 0. In this case, the user

blocks EEXIST’s first winning opportunity, but fails to block its

second winning opportunity. EEXIST fails to claim that move,

allowing the user to win on their next move.

game tree is pruned to remove non-viable options.

Scoring was based on the following scale:

• Win=+2

• Draw=1

• Lose=-2

• forfeit=-1 (immediate end of testing, with a final score

of 0 for the individual)

• badmove=-1 (immediate end of testing, with a final

score of 0 for the individual); a “badmove” is failure

to block or failure to take a winning move

(In fact, various other scoring criteria were explored,

mostly non-scientifically. The above were the final values

used).

8.4 Lessons and Next Steps 91

Given such a potentially large number of games per

run, evolution proceeded slowly in this set of experiments.

As such, only 19 generations were developed. See the file

“raw18,” generation 19, individual 0 for the top performer.

Figure 8.6 shows the bias gradients for this individual. Us-

ing the reference letters from figure 8.1, the only way the

user can win is by moving in squares “f,” “a,” “b” and then

“c”; any other set of moves leads to a draw (assuming the

user makes “smart” moves, i.e., blocks when EEXIST is

one move from winning). Failing to block sometimes (but

not always) allows EEXIST to win.

Figure 8.6: Bias Gradients For EA8HL, Individual 0, Generation

19. Values at the cursor are BiasSRC = 16.22 and BiasDST =
13.31.

8.4 Lessons and Next Steps

One lesson learned from these experiments was the impor-

tance of choosing a good survival metric. In the end, there

didn’t seem to be a single best way to score an individual

in a feasible amount of time. Some of the setups were al-

lowed to run for a few weeks, with the evolution continually

producing higher-scoring individuals, but the improvement

was very slow, and it wasn’t clear if these improvements

were more than incremental. This was, in large part, a fail-

ure in the scoring system (which was somewhat biased to

92 Chapter 8. Tic tac Toe

faster execution, i.e., not allowing individuals who forfeit

to survive, when in fact their genome might have eventually

contributed to a more-fit individual).

A second issue was the mapping of the board to EEX-

IST’s spatial domain. The decision to have EEXIST’s space

run from 0 to 40 was made in the earliest days of the sim-

ulation, and persisted throughout this work. Breaking that

range into 10 equal-sized intervals and using characteris-

tics of each interval as a genome was proposed in the first

genetic work on EEXIST, and has been used ever since.

However, given 9 squares on the tic tac toe board (and

an obvious mapping from board squares to regions in the

genome), and a 10th region for initiation of the game, there

was, in some sense, no space left over for calculations other

than [36,40]. Any intermediate work being done via chem-

ical transfer was likely signaling (or contributing directly

to the eventual signaling of) a desired move. It may be

that having more unallocated space would lead to better

performance.

At this point though, it’s worth going back and reconsid-

ering the basic question: “What are we trying to do?”; and

again, the answer is neither “Play tic tac toe,” nor “Study

genetic algorithms for game playing.” The goal is to study

EEXIST’s capabilities. The fact that it will play a tic tac

toe game at all is somewhat remarkable; the fact that it can

lead most games to a draw, and sometimes force a win,

is perhaps even more interesting. The takeaway message

though is that EEXIST does seem able to exhibit a range of

behaviors: nothing that can’t be done on a von Neumann

machine, but given its peculiar nature and the difficulty of

manually configuring the system, the fact that there are

configurations that do interesting things is noteworthy, and

suggests further investigation may be worthwhile.

In continuing to pursue a genetic/evolutionary approach

though, the question of a “good” survival metric needed to

be addressed. Rather than ponder different weightings for

different actions, or how to combine individual test scores

into a composite score for an individual, a different ap-

8.4 Lessons and Next Steps 93

proach was adopted: testing individuals in an environment

where they might survive or perish; and using their survival

as the sole metric for passing on their genes. In other words,

test individuals in a system where they will either survive

or perish. As long as they survive, they can mate. If they

perish, their genes no longer contribute directly to future

generations of individuals.

A few years ago, I had a student named Jordan Curry,

who developed a Virtual Eco System (“VEco”) for a multi-

term project. When he demonstrated this to me, it seemed

like a powerful environment in which to explore various

algorithms for survival and development. In discussing this

later, in the light of EEXIST work, we decided it might

be interesting to drive each of his individual creatures with

an EEXIST. The system already incorporated a semblance

of mating, so this seemed like a natural framework for

exploring EEXIST.

To do this required two main developments though:

1. A new version of VEco, into which could be tied a

population of EEXIST individuals; and

2. A way to feed inputs to EEXIST over a long period

of time without saturating the system.

Item 1 simply required time and coordination. Item 2

is more of a general issue. Inputs are being modeled by

injecting chemicals into a region of EEXIST’s memory; but

since those chemicals may be drained off to other locations

(due to various transfer commands), continually restoring an

input region’s chemical levels to a fixed value could result

in more and more chemicals being injected into the system,

leading to saturation. This may or may not be a problem:

but it felt like it would lead to a weakening of a system’s

effects over time. This was remedied using the diameter

option (discussed previously).

As a preamble to VEco, an intermediate task was under-

taken: using EEXIST to control a simplified lunar landing

game. This is the topic of the next chapter.

94 Chapter 8. Tic tac Toe

8.5 Exercises

1. Run the analyzer and see how well EEXIST plays.

Try playing as a skilled player, a random player, or a

deliberately unskilled player.

2. Come up with a new grading scheme and try to evolve

the system.

3. Change the size of input regions and re-evolve.

4. Make a 2nd EEXIST system and play EEXIST against

itself. Does it get better, or plateau at some nominal

skill level?

9. Lunar Lander Control

As an exploration of a different problem space, experiments

were performed next to see how EEXIST might control a

simplified lunar lander game. The setup was similar to the

old 1970s Lunar Lander video game [9], but simplified in a

few ways:

• the landing surface was flat;

• thrust is a simple binary control (on/off); and

• there is no horizontal control, only vertical.

The code and outputs for these experiments can be found

at https://gitlab.com/nickmacias/ChemComp/tree/master/

ChemCompAPI/EA10HL [10] and https://gitlab.com/nickmacias/

ChemComp/tree/master/ChemCompAPI/EA11HL [11]. The

system is setup as a client/server pair (another preparatory

step for VEco).

The code for the landing simulator (server) itself can be

found here [12] while the usual Main/Core/etc. in EA10HL

and EA11HL contain the client code driven by EEXIST.

https://en.wikipedia.org/wiki/Lunar_Lander_(video_game_series)
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA10HL
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA10HL
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA11HL
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA11HL
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/LunarLander

96 Chapter 9. A Lunar Lander Controller

9.1 Simulation Setup

The simulator itself runs as a server: the code is in https://

gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/

LunarLander [12]. It creates a ServerSocket on port 1213,

through which the user or client code can send initial condi-

tions, step the simulation, turn the thrust on or off, and re-

quest information about the system’s status (altitude, speed

and remaining fuel). The simulator also shows a graphi-

cal display of the ship’s progress, and a crude visual dis-

play of landing speed (a red circle whose diameter corre-

sponds to landing speed). The simulator is runable as a jar

file (“LL.jar”) in https://gitlab.com/nickmacias/ChemComp/

tree/master/ChemCompAPI/EA10HL [10].

The simulation begins with a craft at a given initial

altitude (e.g. 300), being pulled down under a constant

gravitational pull (-9.8, which of course sounds reasonable

on Earth, not so much on the moon), with a given initial

amount of fuel (30). Thrust is initially off, but fuel is burned

at a constant rate of 1 (unit) per second while thrust is ap-

plied. The craft’s initial velocity is 0. A simulated timestep

of ∆t = .125 is used to step the simulation.

The following equations summarize typical initial con-

ditions:

• ag =−9.8 (acceleration due to gravity)

• aT = 12 (acceleration due to thrust)

• f = 30 (fuel)

• s = 300 (initial altitude)

• v = 0 (initial velocity)

• ∆t = 0.125 (simulation timestep)

At each timestep, the system is updated as follows:

• f = f −∆ f ×∆t if thrust is on

• a = ag if thrust is off; a = ag +aT if thrust is on and

f > 0 (total acceleration)

• v = v+a×∆t

• s = s+ v×∆t

The simulation ends in one of two cases:

• s < 0 In this case, the craft has hit the surface. The

system’s score for this run is |1/v| (so a lower impact

https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/LunarLander
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/LunarLander
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/LunarLander
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA10HL
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA10HL

9.2 EEXIST Interface 97

speed gives a higher score);

• s > 1000 In this case, the system has likely locked the

thrust on, will exhaust its fuel and eventually crash

into the surface. The system’s score for this run is

1/smin, the reciprocal of the minimum altitude (so the

closer it got to the surface before reversing velocity,

the higher the score).

9.2 EEXIST Interface

The lunar lander simulation can be driven manually, via a

telnet connection to the server’s port. A simple command-

line interface allows setting of thrust on or off, as well as

interrogation of current system system (altitude, velocity

and remaining fuel). The goal of this set of experiments was

to have EEXIST control the lander. This means supplying

current system information to EEXIST, and having it output

thrust commands (ON or OFF). The basic mechanism was

similar to that used in the tic tac toe player: certain regions

were defined as input and output regions, and chemical

levels corresponded to input and output values.

Three input regions are defined:

• FUEL: the amount of fuel remaining.

– Typical range: 30 to 0

– Input address range: [0,4)
– Formula: SRC = DST = f uel ×1.5

• ALTITUDE: the current altitude of the lander

– Typical range: 300 to 0

– Input address range: [8,12)
– Formula: SRC = DST = altitude/60

• VELOCITY: the current velocity of the lander

– Typical range: 10 (rising) to -30 (falling)

– Input address range: [16,20)
– Formula: SRC = DST = velocity+30

There is also an initialization region (“GO”), defined at

[36,40), which is initialized with SRC = DST = 20 at the

beginning of the experiment.

There is one output region defined: THRUST, which is a

98 Chapter 9. A Lunar Lander Controller

binary output, defined at [24,28). SRC+DST is examined

at all points throughout that region, and the average value is

interpreted as follows:

T HRUST =

{

ON if average ≥ 10

OFF if average < 10
(9.1)

Simulation begins by populating the input regions, in-

jecting the GO signal, and initially stepping EEXIST one

timestep. Simulation then proceeds as follows:

1. the THRUST value is determined from the output

region;

2. the corresponding thrust command is sent to the sim-

ulator;

3. the simulator is stepped forward one timestep;

4. the simulator is queried as to the current state of the

system;

5. EEXIST’s input regions are updated accordingly; and

6. EEXIST is stepped forward one timestep

The above steps are repeated until the craft lands, or its

altitude exceeds 1000 (these conditions are reported by the

simulation server).

If the craft has landed, the score is |1/v| where v is the

impact velocity. If the altitude exceeds 1000, then score is

0.1/altmin where altmin is the minimum altitude achieved

during the run (note that at altmin the velocity must have

reached 0).

If multiple tests are run, the scores for all tests are mul-

tiplied to give the final score for the individual.

9.3 Sets of Experiments

Whereas in the tic tac toe system an individual was tested

against hundreds of opponents, in the lunar lander game

controller each individual was (in some cases) scored on

a single test only. The system was given control of the

craft’s thrust; allowed to land the craft; and then scored on

its performance.

9.4 Some Results 99

A wide range of experiments were performed, with vari-

ous modifications tried, including:

• cutting thrust if the craft is close to the surface (since

it often seemed to get close and then reverse direc-

tion);

• changing the mutation rate during breeding (e.g. breed-

ing 50 individuals with no mutation; 50 individuals at

a mutation rate of 5%; 125 at 10%; and 25 at 25%);

• changing the scaling for scoring based on minimum

altitude;

• changing the population size;

• randomizing the initial altitude at the beginning of

each population test (but leaving it the same for all

members of that population); and

• testing each individual at a variety of altitudes.

It was this last variation that produced the most interest-

ing results, which are described in the next section.

9.4 Some Results

Among the experiments performed on this system, the most

interesting are contained in the files raw8-raw11 (with corre-

sponding output files out8-out11). All these runs were made

with initial fuel=30, g=-9.8, thrust=12.0, and ∆t = 0.125.

raw8 was developed using an initial altitude of 300.

Individual 0 (generation 87) lands at an impact speed of

-0.931 (this is considered a successful landing). However,

the performance is extremely sensitive to initial velocity: at

an initial altitude of 299, the impact velocity is -2.4; while

at an initial altitude of 301, the impact velocity is -42.8!

Figure 9.1 shows the impact velocity for a range of

initial altitudes. As can be see, while the performance is

good at an initial altitude of 300, it degrades quickly away

from that point. Figure 9.2 shows the bias gradients for this

individual.

In file raw9, individuals were assessed at a range of

altitudes, from 295 to 305 (by 1s, i.e. 11 different initial

altitudes). Each run was scored, and the individual’s final

100 Chapter 9. A Lunar Lander Controller

Figure 9.1: Impact Velocity vs Initial Altitude, raw8, Generation

87, Individual 0.

Figure 9.2: Bias Gradients for raw8, Individual 0, Generation 87.

Values at the cursor are BiasSRC = 14.32 and BiasDST = 15.64.

score (which was used for the evolutionary process) was the

product of scores from each run.

Figure 9.3 shows the impact velocity for different initial

altitudes. In this case, the performance seems to drop off

linearly away from 300, continually degrading below 300,

while initially degrading and then improving towards 400.

Figure 9.4 shows the bias gradients for this individual.

In raw10, each individual was assessed at 11 different

initial altitudes, from 275 to 325 (by 5’s). In this case (see

figure 9.5), the performance remains good at values below

300, all the way down to an initial altitude of 200; while

at altitudes greater than 300, the performance degrades

9.5 Diameter Restriction 101

Figure 9.3: Impact Velocity vs Initial Altitude, raw9, Generation

44, Individual 0.

Figure 9.4: Bias Gradients for raw9, Individual 0, Generation 44.

Values at the cursor are BiasSRC = 10.05 and BiasDST = 21.62.

steadily (but remains good in the training range of 275-325).

Figure 9.6 shows the bias gradients for this individual.

If raw11, each individual was assessed on a range of

initial altitudes, from 200 to 400 (by 10’s). As can be see in

figure 9.7, the performance is good throughout that entire

range, except for a few curious spikes near 300. Figure 9.8

shows the bias gradients for this individual.

9.5 Diameter Restriction

EA11HL (https://gitlab.com/nickmacias/ChemComp/tree/

master/ChemCompAPI/EA11HL [11] contains similar ex-

periments, except that the diameter of the input regions

https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA11HL
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/EA11HL

102 Chapter 9. A Lunar Lander Controller

Figure 9.5: Impact Velocity vs Initial Altitude, raw10, Generation

104, Individual 0.

Figure 9.6: Bias Gradients for raw10, Individual 0, Generation

104. Values at the cursor are BiasSRC = 11.25 and BiasDST =
5.89.

Figure 9.7: Impact Velocity vs Initial Altitude, raw11, Generation

56, Individual 0.

9.5 Diameter Restriction 103

Figure 9.8: Bias Gradients for raw11, Individual 0, Generation

56. Values at the cursor are BiasSRC = 7.36 and BiasDST = 5.43.

has been set to 0. With a diameter of 0, no chemicals can

flow into or out of those regions. This does not however

mean that those regions don’t affect anything: the chemical

amounts (offset by the biases) still dictate transfers from

SRC → DST ; but the chemicals which code those instruc-

tions do not themselves change, and are never transferred

anywhere.

This restriction prevents system saturation. Consider,

for example, the fuel input region. At each timestep, the

chemical levels in this region should reflect the amount

of remaining fuel. Suppose though that somewhere there

are transfer instructions that are removing chemicals from

that region. The external system will continually add new

chemicals to the system in order to set the fuel region’s

chemicals to the appropriate level. As those chemicals are

transferred to other regions, the total amount of chemicals

in the system will increase. After a long enough run, the

system may become so flooded with chemicals that it is

no longer possible for it to function properly. Similarly, if

chemical are transferred into an input region, then they will

be removed from the system, and the memory may become

chemical-starved. Restricting the diameter to 0 eliminates

these possibilities.

At first, it seemed that this diameter restriction made

104 Chapter 9. A Lunar Lander Controller

evolution difficult: but in fact, the system evolves as well

as with the unrestricted diameters. See raw0diam, genera-

tion 141, individual 0, which was trained at a single initial

altitude of 300. Figure 9.9 shows the behavior of individual

0, generation 141, when tested against different initial alti-

tudes. As can be seen, the behavior degrades slowly below

300; but above 300, it drops off rapidly. In fact, the system’s

best performance is at an initial altitude of 304. At 305, it

gets very close to the surface, and then engages the thrust

fully, runs out of fuel, and free-falls back to the surface at a

high impact speed. This is the behavior at larger initial alti-

tudes. In this case, the “script” seems to be well-established:

it’s trying to descend a distance of 304, achieving a velocity

of 0 at the bottom. At an initial altitude of 305, it drops

down to a minimum altitude just above the surface, but

instead of landing, then engages the thrust until all fuel is

spent, and then crashes to the surface.

Figure 9.9: Behavior of EEXIST-Controlled Lander with Input

Diameters Set to 0.

9.6 Conclusions

It does seem EEXIST is able to control a lunar lander game,

though the experiments tended to wander into the “exami-

nation of GA dynamics” area rather than studying EEXIST

itself. Nonetheless, it’s interesting to observe that with the

right set of bias gradients, the system can successfully land

9.7 Exercises 105

for a range of initial altitudes. As usual, there’s no yet-

apparent reason for the particular pattern of bias gradients

emerging from different training methods.

The system clearly looks non-linear, i.e., the perfor-

mance doesn’t always change smoothly with changes in

initial altitude. It’s also clear the system “doesn’t under-

stand what it is doing.” It doesn’t seem to engage the thrust

in direct response to speed or altitude, for example. This

is evidences by making small changes in the acceleration

due to thrust aT , which wildly degrades the performance

of the system. Similarly, decreasing the timestep causes

the craft to come to a near stop at a higher altitude, and

then free-fall with the thrust disengaged. This suggests the

system may be essentially “following a script” rather than

directly responding to input parameters (speed, altitude and

remaining fuel). On the other hand, changing the initial

amount of fuel (say increasing it, which should have no im-

pact on the lander’s performance) significantly changes the

system’s behavior: suggesting that the amount of remaining

fuel is being factored into the system’s calculations in some

manner.

Part of the above can be explained by the limited size

of the training sets (comprised of 1, 11 or 21 different

initial altitudes). The next set of experiments – the Virtual

Eco System (“VEco”) – will address this shortcoming, by

continually training each individual.

9.7 Exercises

1. Run the LL server and talk to it with telnet. Try to

land the ship manually.

2. Run the analyzer and explore the different “raw” files

(see README for details on how each file was evolved).

Test these with the conditions they were evolved with,

then test them with different initial conditions (fuel,

altitude, initial speed).

3. Try evolving with very little initial fuel; can you get

the system to evolve a more nuanced solution?

106 Chapter 9. A Lunar Lander Controller

4. Try evolving with a variety of initial fuels, and see if

you get a more robust system (one that is less sensitive

to the initial amount of fuel).

10. Virtual Ecosystem

For an online synopsis of this project, see http://songlinesystems.

com/VEco.html [25].

10.1 General Idea

The next set of experiments were based on the idea of a

virtual ecosystem (“VEco”). The basic setup consisted of

a virtual world in which creatures would:

• move around, expending energy as they move;

• absorb energy (“food”) if they encounter it;

• attack other creatures; and

• mate with other creatures.

Each creature was controlled by its own EEXIST sys-

tem. Information about a creature’s immediate vicinity was

supplied as inputs to EEXIST, and an output region was

monitored to read EEXIST movement requests.

The setup was similar to the lunar lander game, in that

a client/server model was used. The server handled all

http://songlinesystems.com/VEco.html
http://songlinesystems.com/VEco.html

108 Chapter 10. Ecosystem

bookkeeping on the environment (appearance/consumption

of food), individual creatures (birth, location, energy level

and death) and their interactions (attacking, mating).

Note that there is no need for a separate survival metric

in this setup: survival is the metric. If a creature runs out of

energy, it dies and is removed from the population. If it still

has energy, it remains in the population, and may eventually

mate, passing on its genes to a new generation.

Most action occurs when a creature moves forward. At-

tempted movement onto an empty square simply changes

the creature’s location, and decreases the creature’s energy

by 1 unit. If this completely depletes a creatures energy, the

creature dies.

Movement onto a square containing food increases the

creature’s energy. Movement into a square occupied by

another creature has one of two possible effects:

• if the two creatures are facing each other, mating

will potentially occur, with a new offspring appearing

behind the creature that is trying to move;

• if the two creatures are not facing each other, the mov-

ing creature will attack the other creature, absorbing

energy from it.

All code and outputs for these experiments are found on

the VEco sub-directory, at https://gitlab.com/nickmacias/

ChemComp/tree/master/ChemCompAPI/VEco [13].

10.2 Client/Server Setup

The server maintains an n×n grid of squares comprising

the universe in which creatures exist. A simple command

line interface allows a client to interact with the universe,

using the following commands:

• R - reset the simulation

• B 1 or 0 - allow or disallow breeding

• E - deposit a random amount of energy on a randomly-

selected square

• C - create a new creature. The server returns the new

creature’s integer ID

https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/VEco
https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/VEco

10.2 Client/Server Setup 109

• id T R G B BL - set the color of the individual whose

id is “id.” RGB are the red, green and blue colors; BL

is 1 for blinking, 0 for non-blinking

• id O - mark this individual as old (yellow eyes)

• id L or id R - indicate that individual “id” wishes to

turn left or right

• id F - indicate that individual “id” wishes to move

forward one square. The return value from the server

is one of:

– K id - the moved individual killed another crea-

ture, whose ID was id

– M idparent idnew - the movement resulted in

mating. idparent is the ID of the other creature

involved in the mating; idnew is the ID of the

new creature. Note that this information can be

used by the client to merge parent genomes for

the offspring.

– OK - nothing special happened

• id Q - query the individual. The server returns a set of

information about the individual and its surroundings

(detailed below).

• D daylight - sets the daylight level of the system

according to the value of “daylight” (0-25)

• Q - shutdown the server and exit

10.2.1 Query Response

The “Q” command asks the server to convey information

about the area surrounding a creature. The response string

is a single line, consisting of the following:

• the creature’s current energy level (0 if the creature is

dead)

• a single space

• 24 characters, describing each square in a 5×5 region

centered at the creature. Possible characters are:

– “-” for an empty square

– “*” for a wall

– “F” for a square containing food

– “N,” “S,” “W” or “E” for a square containing a

110 Chapter 10. Ecosystem

creature; the specific value indicates the direc-

tion in which that creature is facing.

The order in which this information is returned is shown

in figure 10.1. The creature’s position is represented by “C”

in the middle of the region. In the return string from the

Q command, the first of the 24 characters returned corre-

sponds to the square labeled “1,” followed by the character

corresponding to the square labeled “2,” and so on.

12 13 14 15 16

11 2 3 4 17

10 1 C 5 18

9 8 7 6 19

24 23 22 21 20

Figure 10.1: Ordering of Neighbors for Return String from the

Query Command. The “Q” command returns the creature’s en-

ergy, followed by a space, followed by 24 characters representing

the state of each of the 24 regions shown. Information is presented

for square “1” followed by “2” and so on.

10.3 Additional VEco Mechanics

The above description covers the basic movement, breeding

and death of creatures within VEco, most of which are

handled by the server. Beyond these details, there are many

variations possible, some of which were explored, some left

for future work. Note that some of these are handled by the

client code.

• Walls are currently impenetrable. A wrap-around

model is another possibility, but this has not been

explored.

10.4 EEXIST Interface 111

• No energy is expended in turning, but a turn is always

followed by a request to move forward. If the forward

move is blocked though, the total energy expenditure

remains 0.

• Mating is only allowed if both parents have at least a

certain amount of energy.

• In some cases, mating is only allowed among parents

who have reached a certain age.

• In some cases, mating can occur without parents com-

ing into proximity of each other. At random intervals,

new creatures are introduced into the population, but

their genome is set to be a mix of the genomes of two

randomly-selected parents.

• Creatures are processed in round-robin fashion, but

newly-created creatures are always positioned at the

head of the processing queue.

10.4 EEXIST Interface

Each creature has an EEXIST system associated with it.

There is a client that keeps track of each individual creature

(as does the server), and is responsible for communicating

with the server. The client conveys information about a

creature’s neighborhood to its associated EEXIST system;

steps EEXIST; and reads any requested action indicated by

EEXIST.

The usual genome structure is employed, consisting

of 10 equally-spaced regions, each with its own pair of

SRC/DST bias gradients. The address space is split into

five input and one output region, as follows:

• [0,4) input region R1 (figure 10.2);

• [4,8) input region R2;

• [8,12) input region R3;

• [12,16) input region R4;

• [16,20) input region R5; and

• [24,28) output region.

Regions R1-R5 are used to inject information about a

creature’s environment into EEXIST. R1, R3 and R5 de-

112 Chapter 10. Ecosystem

R3

R1 C R5

Figure 10.2: Input Regions for VEco. For a creature centered at

“C,” information about R1, R3 and R5 are sent into the creature’s

corresponding EEXIST system.

scribe the state of the corresponding regions shown in figure

10.2. For each of these regions, the following SRC and DST

chemical levels are set:

• SRC = DST = 5 is the square is empty;

• SRC = DST = 25 is the square contains a creature

that is facing you (and thus is a potential predator or

mate, depending on which way you’re facing); and

• SRC = DST = 15 otherwise (square contains a wall,

food, or a creature that is neither a threat nor a poten-

tial mating partner).

Initially, R2 and R4 conveyed further neighborhood

information; but these were later changed to allow input

of more-general information. Region R2 is a general-area

input. For the 24 squares around the creature, the number

of squares that are not empty (i.e. contain a wall, food, or

a creature (in any orientation)) are counted, and SRC and

DST in region R2 are set to that count. Thus, R2 shows,

roughly, how crowded the area is (though that crowding

could be beneficial, dangerous or benign).

In the initial runs of the system, creatures tended to move

to the edges of the universe and sit there. If all inputs are

based on the contents of the surrounding squares, and noth-

10.5 Experiments 113

ing is moving, then none of those inputs ever changed, and

thus creatures that stopped moving (often, but not always,

because they were facing a wall) would never start moving

again. This might be rectified by having energy levels drop

over time, while also giving a creature information about its

own energy level. This however felt a bit “rigged.” Instead,

a new input was introduced: a cyclic “daylight” variable.

This variable runs repeatedly from 0 to 25 and back to 0,

changing every 50 ticks of the simulated universe (one tick

per creature update). In region R4, SRC = DST = daylight.

This helps keep the system from becoming stagnant, by

changing the inputs to a creature even if the creature is not

moving and nothing is changing in nearby squares.

There is a single output region defined at [24,28), which

is interpreted as a movement request by the creature. The

average SRC+DST is calculated for this region, and used

to determine an output as follows:

• 5 ≤ SRC+DST < 10 turn left and move forward;

• 10 ≤ SRC+DST < 15 turn right and move forward;

• 15 ≤ SRC+DST just move forward;

• otherwise take no action.

10.5 Experiments

As usual, a number of experiments were run, with a lot

of variations in the experimental setup. Throughout the

run, genetic information was written to a file, as was a

synopsis of birth and death events. The general setup for

an experiment was to initially seed the population with a

set of individuals with randomly-generated genes, and then

allow them to interact throughout time. The server presents

a graphical display of the universe, such as shown in figure

10.3.

The client has a user interface, where command-line

instructions can be given by the user (note that this is dif-

ferent from the command-line interface to the server, which

the client controls). The following commands are available

to the user:

114 Chapter 10. Ecosystem

Figure 10.3: Sample Graphical Server Output. Creatures are

shown in red; eyes are drawn to indicate which way the creature

is facing. Green squares represent food. ID numbers are shown

near each creature, and the creature’s energy level is shown below

the ID (smaller text). The intensity of the creature also correlates

to its remaining energy: creatures with more energy are drawn

brighter than those with less energy.

• ? - display a help message

• t id - tag an individual (default coloring)

• t id R G B - tag an individual with the given color

• e id - show the general EEXIST display window for

the given individual’s EEXIST

• e2 id - show the detailed SRC/DST window for the

given individual

• f filename - open the given filename for reading ge-

netic information

• c src dst - clone genetic material from individual “src”

to individual “dst”

• breed on - enable breeding

• breed off - disable breeding

• pause - pause the simulation

• run - resume the simulation

• d - inject a drone (see the subsection below)

• @filename - run commands from the named file

• reset - reset the simulation (client and server)

• #anything - create a comment (not interpreted)

10.5 Experiments 115

• Q - quit immediately

In addition to a text/command input area, the client’s

control panel includes sliders for adjusting:

• the system karma (this affects the karma of all existing

individuals, as well as creatures created in the future);

• the initial population size;

• a delay between updates (to make it easier to see

what’s happening in the graphical output); and

• the number of EEXIST timesteps used to update one

creature before moving on to the next creature.

There is also a checkbox for pausing the system (note

that the state of this check box is not affected by the pause

and run commands), as well as buttons for resetting the

system and for exiting the simulation.

10.5.1 Drone Interaction

After letting a population of individuals develop and evolve,

it seemed like it might be useful to be able to interact with

the population, so a drone capability was added to the sys-

tem. The “d” command requests injection of a drone into

the population. The drone is highlighted, and can be maneu-

vered with the f (forward), l (turn left) and r (turn right) com-

mands. Note that unlike other commands, these keystrokes

do not need to be followed by ENTER: they are single-key

commands (but holding the key does not successfully regis-

ter as multiple key presses). This makes it relatively easy

to manipulate the drone inside the simulated ecosystem,

allowing the user-controlled drone to eat food, to approach

and attack other creatures, and so on. The “q” key is used to

exit the drone-control mode, and return to the regular com-

mand line interface (where ENTER is required to execute

a command). Upon leaving drone-control mode, the drone

remains in the population, but does not move nor mate.

It is difficult to meaningfully quantify the behavior of

the population in response to drone actions, but subjectively,

it appears that the population does respond to the drone’s

movements. In some cases, the older creatures seemed to

move away as the drone approached. This behavior was

116 Chapter 10. Ecosystem

interesting enough to encourage further experimentation, as

described in the next sections.

10.5.2 Longevity Data

As the system runs, new creatures are given sequential ID

numbers, thus the ID shows relative age of individuals (crea-

tures with higher IDs being younger than those with lower

IDs). An initial analysis of the population can be made by

looking at the distribution of individuals’ IDs.

Figures 10.4-10.11 show graphs of age vs. ID number

at different points during the development of the ecosystem.

Figure 10.4 shows the population at 100,001 cycles. The

population has some individuals with an age around 100,000

(these are likely first-generation individuals), as well as a

number of younger individuals (those with IDs above 100).

Figure 10.4: Graph of Individual IDs vs. Age, Cycle 100001. A

number of members have survived from the beginning of the run.

Figure 10.5 shows the system at cycle 200001. The older

individuals remain, but there are more younger creatures.

This trend continues through figure 10.8, at cycle 1000001.

If figure 10.9 (cycle 2000001), the oldest individual

is younger than 2000001 cycles. It appears the previous

longest survivors have died, and the age distribution of the

remaining population is becoming linear.

In figure 10.10 (cycle 3,000,001), the oldest individual

has an age below 1,000,000, and the age distribution looks

linear. Figure 10.11 shows the system at cycle 6,000,0001.

10.5 Experiments 117

Figure 10.5: Graph of Individual IDs vs. Age, Cycle 200001.

Figure 10.6: Graph of Individual IDs vs. Age, Cycle 400001. A

lot of the original population has died.

Figure 10.7: Graph of Individual IDs vs. Age, Cycle 700001.

Most of the population’s ages follow a roughly linear distribution.

The oldest individual has an age below 500,000, and age

distribution is close to linear.

The trend seems to be that as the system ages, the oldest

118 Chapter 10. Ecosystem

Figure 10.8: Graph of Individual IDs vs. Age, Cycle 1000001.

Most of the population is younger than 400000.

Figure 10.9: Graph of Individual IDs vs. Age, Cycle 2000001.

Figure 10.10: Graph of Individual IDs vs. Age, Cycle 3000001.

All first-gen members have now died; the oldest members of the

population are aged around 850000.

individuals get younger and younger (this was observed in

multiple tests). There are (at least) two possible interpreta-

10.5 Experiments 119

Figure 10.11: Graph of Individual IDs vs. Age, Cycle 6000001.

The oldest members are aged under 500000, while most of the

population is under 200000.

tions of this:

1. random individuals in the original population hap-

pened to be well-suited to survive, but only against

the rest of the initial population. As more and more

individuals came into the population, the advantages

possessed by these first-generation individuals turned

out to be nothing special; or

2. the population really is learning to survive better, and

over time, the entire population has developed sur-

vival mechanisms, thus giving none of the individuals

any particular advantage over the others.

The most interesting explanation would be #2. In order

to test for this possibility, a new experiment was designed:

mixing a trained population with a randomly-generated

population.

10.5.3 Trained Vs Untrained Population

The goal in this set of experiments was to test the above

hypothesis: namely, that a trained population would survive

better than an untrained population. To test this, a popu-

lation of 50 random creatures was created. Then the 25

oldest creatures from an aged population (the one that was

6 million cycles old, from figure 10.11) were cloned into

25 members of the random population. Mating was turned

120 Chapter 10. Ecosystem

off, and the ecosystem was simulated, allowing the crea-

tures to interact. The results were consistent across multiple

experiments: almost all of the initial deaths were from the

young/random population of creatures, while the old popu-

lation decreased far more slowly. Figure 10.12 shows the

decline in each population across time. While the general

trend of these graphs is in line with what was anticipated,

some of the artifacts are still confusing: for example, why

deaths seem to occur in clusters of 3 or 4 at a time.

Figure 10.12: Injection of 25 Trained Creatures Into a Population

of Random Creatures. As can be seen the trained creatures survive

better than the untrained ones. By the time the first trained

creature has died (after timestep 7000), nearly half (12 out of

25) of the untrained population has died. At timestep 14680,

80% of the trained population is still alive, while the untrained

population is down to 8% (2 survivors out of 25).

10.6 Exercises

1. Run the server (VEco.jar) and control it with a telnet

connection.

2. Run the server and main program’s .jar files (available

here [13]) and evolve a population.

3. Inject a drone into the ecosystem and explore how the

population behaves.

4. Vary karma and repeat the above.

5. Change the number of cycles per step and re-evolve.

6. Try working with different sized universes.

https://gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/VEco

10.6 Exercises 121

7. Change the code to consume energy whether a crea-

ture is moving or not.

III

11 Next Steps . 125

Bibliography . 135

Index . 137

Part Three - Next Steps

11. Next Steps

The experiments presented in this text represent a single

thread of exploration through the space of possible experi-

ments. The genetic approach has been used merely as a stop

gap, since the process of designing algorithms for EEXIST

is still poorly understood. Many of the design decisions that

have been made (e.g. values for ∆x, clipping of chemical

levels, etc.) are likely enhancing or restricting the richness

of the system. As almost all systems explored have varied

from each other only in the equations of 10 linear bias gra-

dients, the design space is certainly much larger than what

has been explored so far.

While the GA work has yielded some insights into the

capabilities of EEXIST, they do not illuminate the bounds

of the architecture. In particular, only systems that produce

very simplified behaviors which score well on the chosen

metrics have been studied.

Long-term goals are difficult to speculate on, other than

the general notion of “understanding the nature of the sys-

126 Chapter 11. Next Steps

tem’s behavior” and looking for natural systems that EEX-

IST somehow emulates. Shorter-term goals are easier to

enumerate, and are described below. This is not an exhaus-

tive collection; it’s simply a growing list of questions and

ideas that have occurred throughout this work.

11.1 Evolving vs Learning

While the language of evolution and genetic algorithms has

been used in these experiments, it’s not clear that the de-

velopment process is actually “genetic.” The underlying

structure of each individual is identical: all that is changing

is the setting of the bias at each location. This is not a fun-

damental change to e.g. the morphology of the individual; it

seems more like a change to the “wiring” (since setting the

bias basically changes the center point of an instruction’s

address space).

Moreover, while a population of individuals has been

used to try out different such wirings, there’s no reason

these variations can’t be explored within a single individual.

Hence, it may be that the mechanisms being explored in

these experiments are more akin to learning than to evolu-

tion. What is needed is a way for a single individual to retain

the results of past runs, and modulate their wiring over time.

While this is somewhat a question of viewpoint, a change

from working explicitly with a population of individuals to

running all the mechanics inside a single individual likely

has consequences for both efficiency and flexibility.

Very recent work, performed since the time of the first

draft of this text, has explored this question further, and

shown that some of the behaviors discussed can be devel-

oped within a single individual, i.e., using a GA with a

population size of one. This work will need to be further

developed, and documented elsewhere.

11.2 Input and Output 127

11.2 Input and Output

The basic model for input and output is only a first attempt

at allowing interactions between EEXIST and the outside

world. While the current model uses average SRC and DST

levels inside a region, there are other possibilities:

• for output, one may require that all chemical levels

inside a region be above or below a threshold (as

opposed to the average value);

• for output, one may compare the difference between

SRC and DST to a threshold;

• for input, one might inject chemicals only once rather

than continually adding or removing chemicals to

maintain the desired level.

11.3 Necessity of Bias

Adding bias gradients as the main genome variable seemed

to be a key to successful evolution. However, there were 2

other changes made alongside the switch to bias gradients:

1. the system is reset (i.e. initial chemical levels are

restored) before each test, as opposed to leaving the

system in its state following each test; and

2. experiments switched to testing systems on the entire

set of possible inputs, as opposed to (for example) a

random subset of tests.

It would be interesting to re-visit evolving using pure

chemical levels vs. bias gradients, following implementa-

tion of the above two changes. Not only might evolution

still be feasible, it’s unclear if bias actually adds any new

capabilities to the system.

Here again, since the initial draft of this text, work

has been done in this area, and perfect digital logic gates

have been evolved using only chemical levels as a genetic

signature, i.e., with all bias levels set to 0. This too will

need to be explored further, and documented elsewhere.

128 Chapter 11. Next Steps

11.4 Uniqueness of Genomes

An open question is how a particular set of bias gradi-

ents translates into a particular behavior. As a first step

towards understanding this, an XOR gate was evolved 5

times, from 5 different initial (random) populations. Af-

ter 37 generations, four of the populations had evolved a

perfect individual (12800/12800), while the best individual

in the 5th population was performing at 99.91% perfection

(12788/12800).

Figure 11.1 shows the bias gradients of these 5 individ-

uals. As can be seen, there is no obvious similarity between

these configurations.

(a) (b)

(c) (d)

(e)

Figure 11.1: Bias Gradients for 5 XOR Configurations. (a)-(d)

correspond to perfect individuals; (e) corresponds to an individ-

ual performing at 99.91% perfection.

Repeating this exercise with more-complex target behav-

iors might be illuminating. At the least though, this exercise

shows that the mapping between genomes and functions is

definitely not injective. It would be interesting to repeat this

11.5 Other Models and Implementations 129

over a very large number of runs (say 100 or 1000), and see

if clusters of similar bias gradients appear.

11.5 Other Models and Implementations

The chemical model is a first idea about how to represent

the enhanced ZBC. Other models are likely possible, and

might expose different aspects of EEXIST which are being

obscured by the SRC/DST chemical model.

Related to this is the question of implementation: how to

build (at least theoretically) a physical version of EEXIST.

The chemical model seems unlikely to be directly imple-

mentable: using chemical amounts to somehow address

distant regions of chemicals seems unnatural. Such address-

ing in an electrical implementation can perhaps be more

easily envisioned: voltage levels can be decreased along a

resistive path, and their vanishing can be used to trigger a

read or write at a remote location. Triggering at a voltage

level near 0 can be used to introduce non-zero karma. The

details of such a scheme are a topic of current research.

It is also possible that EEXIST already models some

real-world system, and it is an ongoing quest to discover

what such a system might be.

11.6 Other Areas to Explore

There are a number of other areas of EEXIST that can be

explored:

• All the current work is based on a one-dimensional

system (memory is addressed by a single X address).

It would be interesting to work with a higher-dimensional

system. For a 2D system, one needs 4 chemicals (e.g.

SRCx, SRCy, DSTx and DSTy). Each location’s mix

of SRC and DST chemicals thus specifies an (x,y)
coordinate for the source and destination of a trans-

fer. Likewise, the bias settings would apply to each

of these 4 chemicals. Of course the address space

in which these chemicals are placed would also be

130 Chapter 11. Next Steps

two dimensional. All other mechanisms could stay

the same. This can obviously be extended to three

(or more) dimensions. It’s unknown how (or even

if) any of these changes would affect the system’s

capabilities.

• One can change the discretization (∆x and ∆t) as well

as the maximum and minimum values of x.

• The current work only sets chemical levels with SRC =
DST : all variation is implemented via bias settings.

There are many more possible configurations by al-

lowing SRC and DST to be set independently.

• Most work has been done using proportional flow,

where the rate at which chemicals move from a source

location is proportional to the amount of chemicals

present at that source. An alternative is absolute flow,

where the flow rate is independent of the chemical

levels (but still depends on diameter and karma). Re-

cent experiments with absolute flow suggest that it

works as well as proportional flow (depending on

what the absolute flow rate is set to), which is useful

because absolute flow may be easier to implement

than proportional flow. More research is required into

the differences between these two mechanisms.

• In the tic tac toe work, the address space was bro-

ken into 10 regions (to match the locations of the

set of bias gradients in the genome). The system

requires 9 inputs/outputs (a-i), each of which is allo-

cated to one of the 10 regions as shown in figure 8.1);

and the 10th region ([36,40]) is used to inject initial

chemicals to start the game (since EEXIST is moving

first). Since all locations in the address space are used

for input and output, it seems as if, in some sense,

there’s no room for computation: anytime chemicals

are moved into most anywhere in the memory (ex-

cept for [36,40]), it contributes directly to a vote for

a move in that square. While regions associated with

moves that have already been made are in some sense

“available,” it feels somehow like there isn’t enough

11.6 Other Areas to Explore 131

space for pure computation. It would be interesting

to either:

– change the genome structure to use smaller bins,

and change the input/output regions accordingly,

to allow regions of the address space to be es-

sentially unassigned; or

– increase the address space to cover, say, [0,80]
instead of [0,40], while also increasing the num-

ber of regions in the genome to (in this case)

20.

• Figure 10.12 shows the death of individuals in a

mixed population containing both trained and un-

trained individuals. It would be interesting to explore

these dynamics in a population consisting entirely of

trained (or untrained) individuals.

• The Gene and Genome class support other genetic

structures beyond simple bias gradients. These still

remain to be explored. Other modifications in the

genetic mechanisms that can be explored include:

– the number of genes in the genome;

– alternative mating algorithms (choosing each

gene from one parent or the other; selecting

collections of genes from one parent or the other;

taking a random mix of each parent’s genes; and

so on); and

– adjusting the mutation rate.

• Theoretically, one should be able to set negative diam-

eters to effectively reverse the direction of chemical

flow. This is relatively simple to explore, but hasn’t

been studied yet.

• karma is currently fixed for the entire system, across

all time. Position-based karma, or karma which changes

over time, are additional mechanisms that can be ex-

plored. Note that early genetic experiments tended

to begin with small karma (for faster simulation),

followed by increasing karma for better evolvability.

More recent work (including the work reported in this

text) has generally set κ = 5 for the duration of the

132 Chapter 11. Next Steps

runs.

• The address space is currently clipped at 0 and 40,

but a wrap-around model may be more natural.

• The current flow model is based on pure flow from

SRC to DST (“SD flow”). An alternative is to view

an instruction SRC → DST as simply connecting two

locations, but not specifying a direction for fluid flow.

Instead, chemicals flow between connected regions

so as to move towards equilibrium, i.e. where the

chemical levels at the SRC and DST locations would

be the same (“equilibrium flow”). This somehow

feels more natural, but is mostly unstudied.

11.7 Other Questions

Some questions about the system that remain unanswered:

• The simulation is based on a discretization of space

and time. When the transition is made from finely-

discretized to fully continuous, does the behavior

change slightly, or is it possible that the behavior

changes in some fundamental way?

• Another open question is how many (fundamentally)

different behaviors are possible with a given genome

structure. In the current set of experiments, the genome

consists of 10 pairs of bias gradients, where a bias

gradient is basically a pair of real numbers between

0 and 40 (representing, say, the bias value at the start

and end of a region). At some level, it seems like

such a simple structure would be limited in its possi-

ble behaviors. However, if the system exhibits chaos

, this limitation could be a non-issue, since even an

infinitesimal change in one bias gradient might give

significantly different behavior in the resulting sys-

tem.

• If the instructions in the system are scaled by say 1/10

(e.g. SRC and DST are each divided by 10); each

instruction is relocated from location x to x/10; the

SRC and DST biases are scaled by 1/10; κ is divided

11.7 Other Questions 133

by 10; and the diameter of addresses in (4,8] are set to

0; then the resulting system should behave the same as

the original, but will only occupy 1/10th the space of

the original system. Thus systems can be scaled (and

of course the factor of 10 is not special: one could, in

theory, scale the system to occupy one millionth of the

original space). Similarly, adding an offset to the bias

settings and relocating instructions by the same offset

allows a system to be moved to different regions of

the memory. Combining these, it seems it’s possible

to include an infinite number of algorithms in a finite

region of address space. While perhaps limited in

practical applications, the theoretical implications of

this may be interesting.

Bibliography

If you’re reading this text online (e.g. in a PDF), all links

and references should be clickable; but if you’re reading a

hardcopy, rather than typing in a long URL, you can go to

http://book.songlinesystems.com and click on the reference

number (e.g. [2]).

http://book.songlinesystems.com

Index

Symbols

Dκ 47

A

absolute addressing 49

absolute flow.130

adaptable computing . . . 29

address 41

altitude 96

Analyze 65

AnalyzeControl 66

AnalyzeCore 66

API 64

array processor 29

attack 107, 108

B

bias 55

bias gradients 67

C

C inputs 23

C-mode 23

cause and effect 39

cell18

Cell Matrix 17

cell reader 25

cell replicator 25

chaos.132

chemicals 42

client 95

clock 24

compass directions 20

continuity 36, 37

138 INDEX

Core 65

D

D inputs 23

D-mode 23

datapath 5

daylight cycle 113

diameter 55

discretization38

distributed control 27

drone.115

DST.42

E

ecosystem 107

EEXIST 39

effective diameter 47

ego.35

egoless 36

energy 107

equilibrium flow 50

evolution 64

exclusive or 71

extended effect 38

F

fault tolerance 28

flip flop 21

food 107

FPGA 18

frequency discriminator 73

frequency generation . . . 76

fuel 96

full adder 20

G

Gene 65

gene.66

genetic algorithms 64

Genome 65

GIT 64

I

impact speed 97

individual 67

instruction 42

J

Java Doc.64

just-in-time 29

K

karma (κ) 38

L

LL.jar 66

longevity 116

lunar lander 95

M

Main 65

mate 107

mating 67

Medusa Circuit 26

memory-mapped 6

microcode 5

mutation 67

INDEX 139

N

nand.71

neighbors 18

next generation 67

non-dualism.27

nor 71

P

parallel cell replicator . . 26

parallel processing 28

PIG . i

population 67

process improvement driver

30

proportional flow 130

R

raw.txt 65

README 65

reconfigurable logic 17

relative addressing 49

ripple-carry adder 20

S

saturation 103

scalable 27

SD flow 50

self-configurability 28

server 95

simulation 48

software 64

Songline Processor . 17, 31

speed 96

SRC.42

survivors67

T

target cell 25

telnet 97

tic tac toe 81

trained 119

transfer 42

truth table18

tube 44

U

unclocked 18

untrained 119

V

VAX-11.780 5

VEco 107

VEco.jar 66

videos 64

virtual ecosystem 107

W

walls 110

X

XOR 71

Z

ZBC.6

Zero-Bit Computer 6

	Part I — Part One - Theory
	1 Introduction
	2 Transfer Machines
	3 Cell Matrix/SLP Background
	4 Enhancing the ZBC
	5 EEXIST: A Model for an Enhanced ZBC

	Part II — Part Two - Experiments
	6 Overview, Links to Software
	7 Digital Logic
	8 Tic tac Toe
	9 A Lunar Lander Controller
	10 Ecosystem

	Part III — Part Three - Next Steps
	11 Next Steps
	Bibliography
	Index

