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Preface

This book is, in many ways, a continuation of work that
was begun in the 1980s by Jimmy Hargrove, Larry Henry,
Murali Raju and myself. In the midst of conversations
about arti�cial intelligence, data �ow machines, microcode
and architecture tuning, self-awareness, the halting prob-
lem, and a variety of other topics, an idea emerged for a
new type of computational building block: a recon�gurable,
self-con�gurable platform named the PIG (“Processing In-
tegrated Grid”).

In 1999, the �rst patent on the PIG was issued. Later
that year, the PIG was renamed to the Cell Matrix, and Cell
Matrix Corporation was founded by Lisa Durbeck and Nick
Macias.

Over the next 3 decades, research and development on
self-con�gurable systems led to a variety of work in self-
repair, autonomous self-assembly, introspective computing,
embryonic electronics, and other bio-inspired methodolo-
gies. Some of this work led to the development of an analog,
continuous-valued version of the Cell Matrix, called the
“Songline Processor.” Throughout all this work, a set of
core ideas emerged, and eventully, the Cell Matrix and the
Songline Processor felt less like the end of the journey, and
more like steps along a much longer path.

In 2016, EEXIST was developed. This was not a sim-
ple step forward, but rather a case of taking many steps
backwards, and then moving forward in a very different
direction, using past lessons as a guide through this new
territory. The result is a system that barely resembles a
computational engine. EEXIST is an abstraction of a highly
simpli�ed machine, infused with the central ideas of the
Cell Matrix and Songline Processor, modi�ed to incorporate
concepts from the real world such as continuity of space and
time. The result is a system that is dif�cult to understand,
currently impossible to program in any traditional sense,
but seemingly very rich in the behaviors it can exhibit.



It is an ongoing challenge to understand the nature of
EEXIST, and to �gure out how to work with it in its most
general, abstract form. This effort is only just beginning, yet
already seems to suggest an interesting, useful architecture,
applicable to a number of different problem areas. The
present work is a description of some aspects of this early
work. What is contained herein is not the end of the story, it
is only the beginning. My hope is that the interested reader
may perhaps �nd a starting point here for their own research
in this area.

I am indebted to many friends and colleagues for nu-
merous discussions and brainstorming sessions related to
this and similar topics. My students at Clark College have
been a particular source of insight and inspiration in this
work, especially Jordan Curry, Stefanie LoSchiavo, Saulius
Braciulis and Lydia Brynmoor.

Nicholas Macias
Vancouver, Washington, USA

September 2017
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1. Introduction

This manuscript describes a work in progress. It is not a
complete story, nor is it a story whose conclusion has been
reached. It is a description of an ongoing research effort
that, in many ways, started 30 years ago.

The ideas presented herein may not seem useful at �rst.
The system – EEXIST – is simultaneously dif�cult to use
and control, and limited in demonstrated applications. It
does not do any one thing better than existing systems; it is
not a drop-in replacement for a von Neumann architecture.
Nonetheless, it is a potentially promising direction in which
to explore interesting concepts related to extending our
notions of computation.

The point of this work is thus to expose new ideas,
new directions in the �eld of computing. While EEXIST
feels like a very different approach to computation and
control, it is not a randomly-conceived architecture. It has
been deliberately designed, based on lessons learned and
observations of the real world. Successful application of
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the system to a variety of problems is therefore interesting
beyond the solutions themselves. It is more the fact that
a seemingly unusual architecture, which is so dif�cult to
imagine controlling, can in fact perform these algorithms.
This is an important point to remember throughout: it is
not the solutions themselves that are intriguing,it is the
challenge of understanding the system at largethat is the
main focus of this research.

1.1 Quick View of EEXIST
While carefully reading this manuscript (at least Part One)
should give a fairly complete picture of EEXIST, there are
doubtless some readers who hope to glean at least a high-
level view of the system from this introduction. To that end,
here is an attempt at a one-paragraph synopsis of EEXIST.

The idea of this architecture is to de�ne a system where
time and space are continuous; where the effect of each
action is felt immediately everywhere; and where there is no
distinction between subject and object, because everything
is at all moments acting on and being acted on by everything
in the system.

1.2 Chapter Breakdown
Since the goal of this text is to expand on the above descrip-
tion, to help the reader understand and explore EEXIST
(rather than just apply it to problems), it is thus important
to understand the background of the system. Part 1 of this
text discusses the theory of EEXIST through a number of
topics. Chapter 2 describes a very simple type of com-
puter: a Transfer Machine, also called a Zero-Bit Computer
(ZBC), presented as a starting point for the development
of EEXIST. Chapter 3 reviews relevant background on the
Cell Matrix and the Songline Processor, which are used
in Chapter 4 to specify design goals for an extended ZBC.
Chapter 5 presents a model for this extended system, based
on a system of chemical transfers.
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Part 2 covers a set of experiments involving application
of EEXIST to different problems, including implementation
of digital logic; frequency detection and generation; game
playing; and control of creatures in a simulated competitive
environment.

Part 3 discusses open questions and next steps.
As with this text as a whole, each of these chapters,

rather than being a �nal word on any of these topics, is
a launching-off point for future research. The particulars
explored in this manuscript represent one set of possibilities
in a much higher-dimensional design space.

1.3 Exercises
Some chapters include exercises at the end of the chapter.
These are things to think about or try that may help in
understanding the material presented in the chapter.





2. Transfer Machines

What is a computer? Early computers were humans: “com-
puter” was originally a job description. The term “electronic
computer” was used to differentiate arti�cial computers
from human ones. Computers perform calculations, but
more generally they executealgorithms. This however is a
high-level view of what computersdo. It does not answer
the question “What is a computer?”

At a lower level, computers are systems that store infor-
mation and process information based on stored instructions.
At a machine-code level, this is still a reasonable descrip-
tion; but at a lower level – closer to the hardware – the
description changes. Consider a microcoded machine, such
as theVAX-11/780 [2]. Inside the CPU, below the level of
the machine code, is amicromachine. A series of 96-bit mi-
croinstructions direct the behavior of the hardware in order
to interpretthe binary machine code. The microinstructions
have one main purpose:to direct the movement of data
through the components of the datapath.

https://en.wikipedia.org/wiki/VAX-11
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2.1 A Zero-Bit Computer
Note that most of the code in this chapter can be foundhere
[26].

A standard question in a Digital Logic class is: “how
many different instructions can be represented withn bits?”
The answer(2n) suggests that more than a few bits is often
suf�cient, at least in terms ofopcodes. A related question
(sometimes posed in my Discrete Structures class) is: “what
is the fewest number of bits required for coding an opcode
in a generally-useful computer architecture?” If we reduce
this to the case of a transfer machine, the somewhat surpris-
ing answer is0: the system only requires one instruction
(“transfer”) and, being the only instruction, requires no bits
to code it. Each instruction is understood to be a transfer,
and thus only the operands need to be expressed. Hence the
term “Zero-Bit Computer” (or “ZBC” ) is sometimes used
to describe such a system.

A ZBC can be viewed as a large memory, containing
pairs of addresses, each pair containing a source (“SRC”)
and a destination (“DST”) address. The understanding is
that, beginning with a �rst pair, this memory describes a
series of transfer operations that are to take place, copy-
ing the contents of the SRC location to the DST location.
For reasons that will be made clear below, there is only
a single memory, containing both the transfer instructions
and the data being transferred. In other words,the transfer
instructions are themselves potentially subject to transfer.

To do useful work on a ZBC, we require a way to do
things such as arithmetic operations. Computational blocks
– Arithmetic Logic Units (ALUs), multipliers, etc. – are
memory-mapped into the address space, so that, for exam-
ple:

� transferring to address 1011 might copy a value to the
A input of an ALU;

� transferring to address 1012 might copy a value to the
B input of an ALU;

� transferring to address 1010 might copy a value (mean-
ing add) to the FUNCTION SELECT input of an

https://drive.google.com/open?id=0B5jW1Lx4xAtYTGxfSEt2dDZiR0k
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ALU; and
� transferring from address 1013 might copy the result

of the speci�ed function of the two inputs (i.e. their
sum).

By having computation and input/output (I/O) blocks
mapped into the ZBC's address space, one can write code
that performs various procedural steps. For example (using
the above-described ALU), listing 2.1 shows code that will
add the contents of locations 100 and 101 and store their
sum in location 102.

Listing 2.1: ZBC Code to Add Two Variables

Address Con ten t s
0 100 ; read t h e f i r s t number
1 1011 ; copy t o ALU(A)
2 101 ; read t h e second number
3 1012 ; copy t o ALU(B)
4 2000 ; use l o c 2000 t o save a c o n s t a n t ( 1 )
5 1010 ; copy t h e l i t e r a l 1 t o ALU(FUNC)
6 1013 ; read t h e ALU' s o u t p u t
7 102 ; and save i n l o c a t i o n 102

2000 1 ; t h i s i s a l i t e r a l used t o s p e c i f y ADD

This code assumes the ZBC begins executing by read-
ing locations 0 and 1 from memory, and copying from the
address speci�ed in location 0 to the address speci�ed in lo-
cation 1. If we viewMEM as an array describing the mem-
ory's contents, the exact behavior isMEM[MEM[0]] !
MEM[MEM[1]]. In other words, all memory references are
indirect: the transfer is not fromMEM[0] ! MEM[1] but
rather fromMEM[100] ! MEM[1001]. This has the de-
sired effect of copying the �rst variable to be added (stored
in memory location 100) to the ALU's A input.

Following this transfer, the ZBC reads memory locations
2 and 3, and transfers fromMEM[101] ! MEM[1012].
This process continues with successive pair of memory lo-
cations. After the pair atMEM[6] andMEM[7] are read and
processed, the sum of the data inMEM[100] andMEM[101]
will have been stored inMEM[102]. The ZBC has per-
formed an addition of two variables.

Note that if the ZBC executes 1000 consecutive pairs
of instructions, it will then attempt to execute the trans-
fer request stored inMEM[2000] andMEM[2001]. Since
MEM[2000] was being used to store a literal value, exe-
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cuting a transfer based on that stored value would be un-
desirable. This is, of course, a familiar situation in most
stored-program computers with a single memory:there is
no intrinsic differentiation between code and data. More
generally, in Listing 2.1, it's unspeci�ed what should hap-
pen after memory locations 6 and 7 are read and processed:
whatever happens to be in memory next will be executed.
This raises the need for some sort of branch capability.

2.2 Branching in a ZBC
Branching is handled very simply, bymapping the pro-
gram counter (PC) itself into the memory of the ZBC.
In the simulated implementation, the PC is mapped to mem-
ory address 65,535. Thus, the following modi�cation to
listing 2.1 causes the code to loop repeatedly:

Listing 2.2: ZBC Code to Add Two Variables and loop forever

Address Con ten t s
0 100 ; read t h e f i r s t number
1 1011 ; copy t o ALU(A)
2 101 ; read t h e second number
3 1012 ; copy t o ALU(B)
4 2000 ; use l o c 2000 t o save a c o n s t a n t ( 1 )
5 1010 ; copy t h e l i t e r a l 1 t o ALU(FUNC)
6 1013 ; read t h e ALU' s o u t p u t
7 102 ; and save i n l o c a t i o n 102
8 2001 ; read t h e l i t e r a l 0
9 65535 ; and copy t o t h e PC

2000 1 ; t h i s i s a l i t e r a l used t o s p e c i f y ADD
2001 0 ; t h i s i s a l i t e r a l used f o r b r a n c h i n g

The additional instruction (at memory locations 8 and
9) speci�es a transfer fromMEM[2001] ! MEM[65535],
which copies a 0 to the PC, thus causing the instructions to
be re-executed beginning with location 0.

2.3 Conditionals in a ZBC
With procedural statements and looping, we almost have a
complete programming language: the last piece we need is
a way to do conditionals. This is already available though,
since we can manipulate the PC based on the value of a
variable. For example, listing 2.3 shows a simple if/then/else
statement. If the contents of memory location 100 is 0, the
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code will jump to location 10; if the contents is 1, the code
will jump to location 20.

Listing 2.3: ZBC Code for Conditional Execution

Address Con ten t s
0 100 ; read t h e branch v a r i a b l e ( must be 0 or 1)
1 1011 ; copy t o ALU(A)
2 2002 ; read t h e c o n s t a n t 2004
3 1012 ; copy t o ALU(B)
4 2000 ; read t h e c o n s t a n t 1
5 1010 ; copy t o ALU(FUNC)
6 1013 ; read ALU' s o u t p u t (= e i t h e r 2004 or 2005)
7 8 ; and save i n nex t i n s t r u c t i o n SRC
8 0000 ; p l a c e h o l d e r� copy from 2004 or 2005
9 65535 ; t o t h e PC . Th is c a u s e s a jump t o 10 or 20

2000 1 ; t h i s i s a l i t e r a l used t o s p e c i f y ADD
2002 2004 ; a n o t h e r l i t e r a l
2004 10 ; b ranch t a r g e t i f MEM[100]=0
2005 20 ; b ranch t a r g e t i f MEM[100]=1

Listing 2.3 uses the same ALU operations to add the
contents ofMEM[100] to the constant 2004, giving a sum of
either 2004 or 2005. That sum is saved in MEM[8], so that
when that instruction is executed, it speci�es either a trans-
fer from MEM[2004] ! MEM[65535] or MEM[2005] !
MEM[65535], which copies either 10 or 20 to the PC, caus-
ing the next instruction executed to come from either loca-
tion 10 or 20.

One complication to the above code is thatMEM[100]
must be exactly 0 or 1 (since it's basically being used as an
index into a branch table). Using a comparator (mapped into
the ZBC's address space, just like the ALU) will work well
here, to generate a 1 or 0 based on a speci�ed comparison.

2.4 A ZBC Programming Language

This is all perhaps a bit awkward, but can nonetheless be
used to methodically code conditional statements which,
along with branches, allow implementation of most any al-
gorithm. To write code more easily, a simple programming
language can be de�ned as follows:

� two numbers separated by a colon (:) represent a
location/contents pair to store in memory;

� a single number represents a number to be stored in
the next successive location in memory;
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� everything between a semicolon (;) and the end of the
line is a comment;

� blank lines are ignored
So, for example, the code in listing 2.3 could be written

as shown in listing 2.4 (comments have been dropped):

Listing 2.4: ZBC Code for Listing2.3

0:100
1011
2002
1012
2000
1010
1013
8
0
65535
2000:1
2002:2004
2004:10
20

2.5 A ZBC Interpreter
Using this shorthand, we can write code suitable for inter-
pretation in a simple ZBC interpreter. Listing 2.5 shows a
short C program that ingests code such as shown in listing
2.4 and interprets its execution. You can �nd this program
in the �le “xm.c” availablehere[26]

Listing 2.5: Code for ZBC Interpreter

# i n c l u d e < s t d i o . h>

i n t mem[ 6 5 5 3 6 ] ; / / main mem!
# d e f i n e PC mem[65535 ] / / PC i s a c t u a l l y s t o r e d a t end of mem
# d e f i n e DEBUG (mem[ 6 5 5 3 4 ] ) / / s e t t o 1 t o t u r n on debugg ing

main ( i n t argc , cha r�� a rgv )
{

FILE � fp ;
cha r b u f f e r [ 1 2 0 ] ;
i n t addr =0 , da ta , t1 , t2 , from , to , s t a t u s ;

/ / l oad program i n t o memory
i f ( a rgc ==2) fp = fopen ( a rgv [ 1 ] , " r " ) ; e l s e fp = s t d i n ;
wh i l e (NULL != f g e t s ( b u f f e r , 1 2 0 , fp ) ) {

i f (2==( s t a t u s = s s c a n f ( b u f f e r ,"%d:%d" ,& t1 ,& t 2 ) ) ) { / / addr : d a t a
addr = t 1 ; d a t a = t 2 ;

} e l s e d a t a = t 1 ; / / j u s t d a t a
i f ( s t a t u s >=1) mem[ addr ++]= d a t a ;

}

/ / main p r o c e s s i n g loop . . .
wh i l e ( 1 ) {

i f (DEBUG) p r i n t f ("%d:%d[%d]=>%d \ n " ,PC ,mem[PC ] ,
memRead (mem[PC ] ) ,mem[PC + 1 ] ) ;

from=mem[PC++ ] ;PC&0 x f f f f ;
t o =mem[PC++ ] ;PC=PC&0 x f f f f ;
memWrite ( to , memRead ( from ) ) ;

https://drive.google.com/open?id=0B5jW1Lx4xAtYTGxfSEt2dDZiR0k
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}
}

/ / memory� mapped� hardware s i m u l a t i o n

i n t a l u f u n c =0; / / 1=+ ,2=� ,3=� ,4=/
i n t aluA =0 , aluB =0;
i n t compfunc =0; / /1= > 2==
i n t compA=0 ,compB=0;

memWrite ( i n t loc , i n t d a t a )
{

s w i t c h ( l o c ) {
/ / 1000=DISPLAY

case 1000: d i s p l a y ( d a t a ) ; b reak ;

/ / 1010=ALU
case 1010: a l u f u n c = d a t a ; b reak ;
case 1011: aluA= d a t a ; b reak ;
case 1012: aluB= d a t a ; b reak ;

/ / 1020=COMPARATOR
case 1020: compfunc= d a t a ; b reak ;
case 1021:compA= d a t a ; b reak ;
case 1022: compB= d a t a ; b reak ;

/ / I f no t HW, then j u s t w r i t e t o memory
d e f a u l t :mem[ l o c ]= d a t a ;

}
}

memRead ( i n t l o c )
{

s w i t c h ( l o c ) {
/ / ALU

case 1013: / / ALU
r e t u r n ( a l u v a l u e ( ) ) ;

/ / COMPARATOR
case 1023: / / compara to r

r e t u r n ( compvalue ( ) ) ;

/ / Not HW: j u s t read from memory
d e f a u l t : r e t u r n (mem[ l o c ] ) ;

}
}

/ / s u p p o r t code

d i s p l a y ( i n t d a t a )
{

p r i n t f ("%d " , d a t a ) ; f f l u s h ( s t d o u t ) ;
}

a l u v a l u e ( ) / / c a l c u l a t e ALU va lue
{

s w i t c h ( a l u f u n c ) {
case 1 : r e t u r n ( aluA+aluB ) ;
case 2 : r e t u r n ( aluA� aluB ) ;
case 3 : r e t u r n ( aluA� aluB ) ;
case 4 : i f ( a luB != 0) r e t u r n ( aluA / aluB ) ;

r e t u r n ( 0 ) ;
}
r e t u r n ( 0 ) ;

}

compvalue ( ) / / c a l c u l a t e compara to r va l ue
{

s w i t c h ( compfunc ) {
case 1 : r e t u r n ( ( compA>compB ) ? 1 : 0 ) ;
case 2 : r e t u r n ( ( compA==compB ) ? 1 : 0 ) ;

}
r e t u r n ( 0 ) ;

}

The main processing loop of this code is only 3 lines,
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re�ecting the very simple nature of the ZBC's architecture.
The code also includes some memory mapped hardware,
including:

� a display atMEM[1000];
� an ALU atMEM[1010� 1013];
� a comparator atMEM[1020] � MEM[1023];
� the PC atMEM[65535]; and
� a debug �ag atMEM[65534].

2.6 Sample ZBC Programs
Given this very simple architecture, programs for perform-
ing even modest tasks can be fairly lengthy. Listing 2.6
shows code for counting down from 10 to 0, displaying
each value on an output port (the display mapped to ZBC
address 1000).

Listing 2.6: ZBC Code to Count Down From 10 to 0

65535:0 ; Se t PC=0
65534:0

; c o n s t a n t s
511:1
512:10
513:0
514:2
515:150 ; f o r i n f i n i t e loop
520:110
500:0 ; X

; s t a r t o f program
0:512
500 ; x=10

; LOC 2
500
1000 ; D i sp lay X
514 ; c o n s t a n t =2
1010 ; ALU func =sub
500
1011
511
1012
; now 1013=X� 1
1013
500 ; X=X� 1

; see i f X=0
514
1020 ; compara to r "=" f u n c t i o n
500
1021 ; A
513 ; 0
1022 ; 1023 shows X==0

511
1010 ; ALU "+"
520
1011 ; 110
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1023 ; 0 or 1
1012 ; t o B . . . [ 1 0 1 3 ] = 1 1 0 ( x < >0) or 111 (X==0)

; b ranch t o l o c 100
99
65535
99:100

; he re i s l o c 100
100:1013
101:102
102:000
103:65535 ; i f X<>0 t h i s b ranches t o [ 110 ] e l s e [ 111 ]

110:120 ; b ranch t o 120 i f x<>0
111:150 ; b ranch t o 150 i f x==0

120:514
65535 ; LOOP!

150:515
65535 ; s t a y he re

A more complex example is shown in listing 2.7, which
shows code for generating prime numbers.

Listing 2.7: ZBC Code to Generate Prime Numbers

65535:0 ; i n i t i a l PC=0
65534:0 / d i s a b l e debugg ing : )

;��� HW a d d r e s s e s
; 1 0 0 0 : DISPLAY

; 1 0 1 0 : ALU func ( 1 :C=A+B ; 2 : C=A� B ; 3 : C=A� B ; 4 : C=A/B)
; 1 0 1 1 : A
; 1 0 1 2 : B
; 1 0 1 3 : C

;1020 Comparator r e l a t i o n R ( 1 : > , 2 : = )
; 1 0 2 1 : A
; 1 0 2 2 : B
; 1 0 2 3 : A r B

500:3 ; A
501:1 ; B
502:0 ; X

; C o n s t a n t s
511:1
512:2
513:3
514:4

; Program s t a r t s a t 0

0 :511
1:501 ; b=1

; B=B+2
2:511
1010 ; ALU s e t t o +
501
1011
512
1012
1013
501 ; B=B+2

; X=A/B
514
1010 ; ALU s e t t o /
500
1011
501
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1012
1013
502 ; X=A/B

; i s B>X?
511
1020 ; compara to r s e t t o >
501
1021
502
1022
; 1023 i s 1 i f b>x e l s e 0
; use t o t o d e t e r m i n e a branch a d d r e s s

511
1010 ; ALU=+
1023
1011
100 ; =101
1012
; 1013 ( adder o u t p u t ) i s e i t h e r 102 (B>X) or 101

; jump t o 110 ( j u s t so we know our PC ! )
109
65535 ; read from l o c 109 (=110) t o PC
109:110 ; l o c 109 c o n t a i n s 110

100:101
101: 150 / / B <= X code goes a t 150
102: 120 / / B>X code goes a t 120

; ( l o c 110 : c o n t i n u e he re )
110 : 1013
111: 112 ; l o c 112 c o n t a i n s e i t h e r 101 or 102
112: 0 ; c o n t a i n s 102 i f B>X
65535 ; now t h e PC i s 120 i f B>X

; PRIME!
120 : 500
1000 ; d i s p l a y t h e pr ime number
511
1010
512
1011
500
1012
1013
500 ; A=A+2

511
501 ; B=1 ( aga in )

510 ; c o n s t a n t 0
65535 ; Jump t o l o c 0

; See i f X== i n t (X)
150:513
1010 ; ALU func=�
502
1011 ; X
501
1012 ; B
; [1013]=B� X
512
1020 ; COMP r i s "="
1013
1021
500
1022
; [1023]=1 f o r compos i te , 0 f o r c o n t i n u e
179
65535 ; b ranch t o [ 179 ] (=180)

; s e t u p f o r c o n d i t i o n a l b ranch t o 200 (1023=0) or 220 (1023=1)
165:167 ; c o n s t a n t
166:0 ; e i t h e r 167( con t ) o r 168 ( comp )
167 : 200 ; ( c o n t i n u e )
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168: 220 ; ( comp )

179:180
; b ranched he re . . .
1023 ; 0 or 1 ( c o n t i n u e or compos i te )
1011
165
1012
511
1010 ; [1013]=167 or 168
1013
188
; he re i s l o c 188
0 ; f i l l e d i n w i th e i t h e r 167 or 168
65535 ; b ranch t o t h a t l o c

; c o n t i n u e
200:512 ; b ranch t o l o c 2 (B=B+2)
65535

; compos i te
220:511
1010
500
1011
512
1012
1013
500 ; A=A+2
510
65535 ; b ranch t o l o c 0 (B=1)

As with many things at this level, this code is easier
(though not easy) to write than to read! While the ZBC
is not very practical for general purpose programming, it
represents a pared down, minimalist architecture that serves
as an ideal starting point from which to re-build our no-
tion of computation. Before we can do this, we must re-
view some of the ideas that drove this redesign: speci�-
cally, theCell Matrix and the Songline Processor (SLP)[3].
These are the topic of the next chapter.

2.7 Exercises
1. Download the ZBC code (xm.c), compile it, and run

the count and prime test �les (all of these are available
here[26].

2. Write a ZBC program for adding two numbers.
3. Write a ZBC program for printing the larger of 2

numbers.
4. Write a ZBC program for adding a set of numbers.
5. What is a minimal set of memory-mapped hardware

that allows a ZBC to be used for general-purpose
computing?

https://drive.google.com/file/d/0B5jW1Lx4xAtYbmRTaE5Fa2VXZzQ/view
https://drive.google.com/open?id=0B5jW1Lx4xAtYTGxfSEt2dDZiR0k




3. Cell Matrix/SLP
Background

Extensive details on the Cell Matrix and the Songline Pro-
cessor can be found at the main research websitehttp:
//songlinesystems.com[1]. What is presented here is a
high-level summary, speci�cally of those features that led
to the development of EEXIST.

3.1 Cell Matrix

The idea of recon�gurable logic is straightforward. Soft-
ware is changeable, morphable, able to be modi�ed with
its behavior changing accordingly (that's the “soft” aspect
of it). Hardware, in contrast, is rigid, �xed in form and
function, and generally dif�cult to modify without some
sort of invasive procedure (de-soldering, re-wiring, etc.)
(that's the “hard” aspect of it). Recon�gurable hardware
combines the best of these two models, offering the speed of
a hardware system with the �exibility of a software system.
Thus devices such as�eld programmable gate arrays[14]

http://songlinesystems.com
http://songlinesystems.com
https://en.wikipedia.org/wiki/Field-programmable_gate_array
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(“FPGAs”) became popular in the 1980s.
While FPGAs extend the notion of software to the

hardware domain, early devices lacked one important as-
pect of software: the ability of software to examine and
modify itself. This aspect – which is a hallmark of the
stored program computer[15] – offers many advantages
over a system whose con�guration is controlled only from
outside the system.

The Cell Matrix [16] addresses this by endowing the
basic recon�gurable elements of the system with the ability
to directly read and write the con�guration of other elements.
Before discussing this ability forself modi�cation, it will
be useful to discuss the overall structure of the Cell Matrix,
as well as its basic con�gurability.

3.1.1 Cell Matrix Architecture

The Cell Matrix is comprised of a large grid of simple,
identical elements called “cells.” Each cell has a set of
inputs and outputs, connecting it to a �xed set ofneighbors.
The inputs to a cell are processed by the cell's internal
program, and the cell generates outputs accordingly. Figure
3.1 shows a set of connected cells.

The program inside each cell is a simple truth table,
which combinatorially maps inputs to outputs. In the 2-D
example shown in �gure 3.1, each cell has 4 neighbors, and
thus continually receives a total of 4 bits of input from its
neighbors. The cell also produces a single output bit to each
neighbor, thus requiring 4 output bits. This mapping can be
de�ned by a truth table, as shown in �gure 3.2.

This truth table can itself be de�ned by the 64 bits in
the output columns. These are stored in a per-cell memory
and de�ne the basic input-to-output mapping of a cell. Note
thatthe mapping from input to output is unclocked: when
any inputs change, the outputs change in response as soon
as possible. Nothing here is synchronized to any sort of
global clock. While this may make the design process more
complicated than a synchronous one, it offers advantages in
speed and �exibility (and synchronicity can also be added

http://gizmodo.com/the-first-ever-electronically-stored-program-ran-65-yea-528426025
https://drive.google.com/file/d/0B5jW1Lx4xAtYYTllX0hkYWhKczA/view
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Figure 3.1: Two-Dimensional Matrix of Cells. All cells are identi-
cal except for the program stored inside each one (in the block
labeled “TT”). Connections to neighbors are shown with arrows.

via additional mechanisms described below).

3.1.2 Sample Cell Matrix Circuits

Designing circuits with these cells is fundamentally no dif-
ferent from designing with standard digital logic blocks.
One can, for example, con�gure cells to act as logic gates
(AND, OR, etc.). Cells can also be con�gured to act as
simple wires. By combining these in the right way, general
digital circuits can be constructed. Figures 3.3 - 3.5 show
some sample circuits, along with the truth tables used to
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0 0 0 0   D 03 D 02 D 01 D 00
  
0 0 0 1   D 07 D 06 D 05 D 04

0 0 1 0   D 11 D 10 D 09 D 08

1 1 1 1   D 63 D 62 D 61 D 60

N S W E    N  S  W  E
 INPUTS     OUTPUTS

...

Figure 3.2: Truth Table For a Cell Connected to Four Neighbors.
Neighbors are referenced by their compass directions (“N,” “S,”

“W” or “E”) relative to the cell. Di refers to theith bit of the truth
table.

con�gure each cell.
In �gure 3.3, a single cell is being used as a one-bit full

adder : the truth table is simply set up to produce the proper
outgoing sum and carry bits in response to the inputs. Note
that the cell has unused inputs and outputs, but they still
appear in the truth table.

Figure 3.4 shows a set of 8 such one-bit adders, situated
side-by-side so one adder's outgoing carry is fed to the next
adder's incoming carry, thus creating an 8-bit ripple-carry
adder. The inputs are fed in parallel to the north and south,
and the parallel sum appears to the south.

Note that this layout could, in theory, be extended to any
number of cells/adders/bits: 1024 cells would produce a
1024-bit adder. While the maximum propagation delay from
a 1024-bit ripple carry adder is likely to be prohibitively
large, the principle is a general one: by carefully designing
blocks of cells to be modular, larger circuits can sometimes
be constructed simply by placing these blocks together in
the matrix. This is one key toautonomous circuit synthesis.

Figure 3.5 shows a different type of Cell Matrix circuit,
this one comprised of two cells. This con�guration imple-
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 INPUTS    OUTPUTS
W S E N | W  S  E  N
0 0 0 0 | 0  0  0  0
0 0 0 1 | 0  1  0  0
0 0 1 0 | 0  1  0  0
0 0 1 1 | 1  0  0  0
0 1 0 0 | 0  1  0  0
0 1 0 1 | 1  0  0  0
0 1 1 0 | 1  0  0  0
0 1 1 1 | 1  1  0  0
1 0 0 0 | 0  0  0  0
1 0 0 1 | 0  1  0  0
1 0 1 0 | 0  1  0  0
1 0 1 1 | 1  0  0  0
1 1 0 0 | 0  1  0  0
1 1 0 1 | 1  0  0  0
1 1 1 0 | 1  0  0  0
1 1 1 1 | 1  1  0  0

Figure 3.3: A Single Cell Setup As a one-Bit Full Adder. Incoming
bits are supplied to the north and south; the incoming carry is
applied to the east; the sum is presented to the south; and the
outgoing carry appears on the west. The Boolean equations for
the cell's truth table are shown inside the cell.

Figure 3.4: 8 Cells Setup As an 8-Bit Adder. Inputs A and B are
supplied to the north and south, and the sum S is presented to the
south. Each cell is identical to the one shown in �gure 3.3.

ments a simple D �ip �op: a one-bit storage element. The
setup is straightforward: the cell on the left either sends an
incoming bit from the west to the east, or echoes an incom-
ing bit from the east back to the east. The cell on the right
provides feedback, re�ecting whatever is sent from the cell
on the left. When the gate is 1, the incoming data bit is sent
to the cell on the right; when the gate drops to 0, that bit
becomes trapped inside the cells, being passed from one to
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the other repeatedly.

Figure 3.5: A Data Flip Flop. The D input comes from the west,
the clock is presented on the north; Q comes out from the east.

Thus it is possible to design sequential circuits that op-
erate with a clock and synchronize operations using e.g.
standard state machine design techniques. Figure 3.6 shows
a more-complex circuit employing logic blocks, �ip �ops
and wires (wires are implemented exactly like other func-
tions, i.e. the equationDE ! DW copies data from the
eastern D input to the western D output). This circuit imple-
ments a small RAM. One of 16 rows can be addressed with
the inputsA3, A2, A1 andA0. When the WRITE input is
high, the 4 data bitsD3 � D0 (from the top of the circuit) are
loaded into the selected row of �ip �ops. When the READ
input is high, the selected row's �ip �ops supply outputs to
D3 � D0 at the bottom of the circuit.

3.1.3 Con�guration of Cells: C-Mode

The above description of cells covers their behavior in terms
of data processing, i.e., transforming inputs to outputs.
While this is suf�cient for implementing standard digital
circuits, it doesn't allow for introspection as described in
the start of this chapter: in particular, it does not explain
how cells are con�gured. To allow cells to be con�gured by
other cells, we add an additional input and output to each
side of the cell, giving a cell as shown in �gure 3.7.
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Figure 3.6: More-Complex Cell Matrix Circuit. This layout imple-
ments a small memory. The left side of the circuit routes address
inputs (A3 � A0) from top to bottom; the4th column outputs a 1 to
the right when the address matches that row's address. The match
output is combined with the READ and WRITE inputs to drive
the array of �ip �ips (on the right side of the circuit). Each �ip
�op is comprised of a cell (“f”) and a feedback circuit to its right
(similar to the circuit in �gure 3.5. Inputs are loaded in response
to a match from the address block combined with a WRITE signal.
Flip �op outputs are sent to the “g” blocks, which either pass the
prior block's output from north to south (if there is no match);
or pass the �ip �op's output to the south (if the �ip �op is being
addressed by the A3 � A0 inputs).

In this cell, the C inputs are used to control the con�gu-
ration of the cell, as follows:

� if C = 0 (called “D-mode” ), then the D inputs are
processed as described above: they reference a row
of the cell's truth table, which contains the outputs
that are sent to neighboring cells;

� if C = 1 (called “C-mode” ), then the corresponding D
input is used to supply truth table bits, i.e., to populate
the cell's truth table. The corresponding D output is
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0 0 0 0   D 007   D 006   D 005   D 004   D 003   D 002   D 001   D 000

N S W E    CN  CS   CW   CE   DN   DS   DW  DE
 INPUTS                   OUTPUTS

...

Figure 3.7: Full Cell Matrix Cell. There aretwo inputs and
outputs (“C” and “D”) connecting this cell to each neighbor.
The D lines are used for regular data processing, while the C
lines are used for con�guring the cell.

used for reading the truth table's current contents.

C-mode operations are clocked via a system-wide clock
(which is only used in C-mode, but can be tapped into and
utilized by D-mode circuitry).

Figure 3.8 shows the interaction of C- and D-modes, as
well as a typical read/modify/write operation. When the cell
(con�gured as a simple wireDE ! DW) is in D-mode, its
eastern output re�ects its western input, regardless of the
state of the system clock. When the cell enters C-mode, the
D output changes to re�ect the “�rst” bit (D000 according
to the pre-de�ned ordering shown in �gure 3.7) in the cell's
truth table. On the rising edge of the clock, the D input
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is sampled and saved inside the cell. On the falling edge,
that saved value replaces the �rst bit in the truth table, and
the D output now re�ects the second truth table bit. When
the C input returns to 0, the cell re-enters D-mode, and the
D output now re�ects the results of applying the cell's D
inputs to its new truth table.

SYSTEM
CLOCK

DW in

DEout

CWin

DWout

All inputs not shown=0
D000 D002

D008

Most D outputs forced to 0 in C Mode

Cell is in C ModeCell is in D Mode D Mode

DEout

mirrors
DW in

DWout  shows old TT in C Mode

D001

End of 8 th

C Mode
Clock Cycle

D009 D Mode
truth table output for

DW in=DE in=DS in=DN in=0

Figure 3.8: Interactions of C-mode, D-mode and the System Clock.
In D-mode, the system clock has no effect on the cell. In C-mode,
reading and writing of the cell's truth table is synchronized to the
system clock.

This simple setup allows a number of interesting circuits
to be implemented. For example, �gure 3.9 shows acell
reader. The cell on the right places the target cell into C
mode by asserting a1 to its CW output (which is the target
cell's CE input). The target cell sends its current truth table
bits out its DE output, which the cell reader ingests from
its DW input. The cell reader copies those old truth table
bits back to its DW output, which loads them back into
the target cell's truth table (thus effecting a non-destructive
read). The target cell also copies those truth table bits to its
own DS output, where another cell could pick them up and
process them.

Figure 3.10 shows acell replicator, which is similar to
the cell reader, but with one small change: the CS output
is set to 1. With this change, the bits being read from the
target cell's truth table will be copied into the cell to the
south, thus making that cell an exact copy of the target cell.
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Figure 3.9: A Cell Reader. The target cell's truth table is read by
the cell reader. As bits are received, they are re-sent to the target
cell, making the read non-descructive.

Figure 3.11 shows a further embellishment to the cell
replicator. In this circuit, the cell replicator is connected
to a horizontal row of 3 circuits which copy bits from the
west to the south and east, while asserting their CS output.
The result is that four copies of the target cell are created
(in the second row of the circuit). Note that these copies are
created in parallel: the writing of all 4 truth tables occurs at
the same time. This is thus aparallel cell replicator.

It should be noted that the 3 cells on the right of the
top row are identical to each other. This means that these
cells could themselves have been con�gured in parallel. Of
course, that would requireanothercircuit to performthat
parallel replication, so it would seem parallel replication of
n cells always requires (at least)n operations to set it up.
In fact, this is not true: done properly, it takes on the order
of n operations to con�guren2 cells in a 2D matrix. On
a 3D matrix,n operations are suf�cient for con�guringn3

cells. Circuits for doing these better-than-parallel builds are
called“Medusa Circuits” [17].

https://drive.google.com/file/d/0B5jW1Lx4xAtYNGV6XzY5eVJ1OGc/view
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Figure 3.10: A Cell Replicator. The cell replicator reads the
target cell's truth table bits, but copies those bits into the truth
table of the cell to the south, thus making it an exact copy of the
target cell.

3.1.4 Applications of C-mode

Some of the most important aspects of the Cell Matrix are
the following:

� the process of con�guring cells is intrinsic to the
overall architecture;

� control over cells can be realizedfrom within the
system itself;

� the control is distributed throughout the system;
� controlled and controlling entities are interchangeable

(“non-dualism”); and
� the homogeneity of the cellular organization makes

the architecture highly scalable.
By properly utilizing these features, a variety of behav-
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Figure 3.11: A Parallel Cell Replication Circuit. The top row of
cells copies truth table bits from the target cell to the four cells
on the second row. The replication occurs in parallel: all 4 truth
tables are written simultaneously.

iors can be realized in circuits built on the Cell Matrix. The
following is a partial list of some of the areas where the Cell
Matrix is particularly well-suited:

� Highly-parallel processing. If a problem can be di-
vided into a set of identical, independent sub-tasks,
then groups of cells can be con�gured to perform one
set of sub-tasks, and then replicated to perform multi-
ple sets in parallel. While overhead such as control
and communication potentially obviate such perfor-
mance gains, the ability to build custom control and
communication channels (in parallel) makes it possi-
ble to realize signi�cant speedups. This is especially
true for so-called “embarrassingly parallel” problems.
Examples include massive search problems; simula-
tion of 2-D and 3-D systems; �nite element analysis;
and so on.

� Fault tolerant computing. Much work has been done
on using the Cell Matrix's self-con�gurability to build
and run test circuits in order to check for hardware
defects. The trick – being able to handle potential
errors in the test circuits themselves – plys the self-
con�gurability and non-dualism of the system. More-
over, parallel testing is possible, as is parallel synthe-
sis of the test circuits themselves: see this�nal report

https://drive.google.com/file/d/0B5jW1Lx4xAtYRkNZN3A4MlZ6ek0/view
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[18] on a NASA SBIR investigating use of the Cell
Matrix for autonomous fault handling.

� Adaptable Computing. There are domains where be-
ing able to change the micro-architecture of a system
at run-time may be useful, for example:

– if the same operation is being performed on the
elements of a large dataset, multiple hardware
instances can be created to operate on the data
in parallel;

– if an array processor needs to switch between
integer, �oating point and character processing,
the underlying hardware can be re-purposed to
the required datatype;

– if a set of instructions are repeatedly executed
more frequently than other sections of code, they
can be cast into hardware, allowing for faster
execution (just-in-time hardware synthesis).

These are but a few examples of where adaption of
the hardware may be useful. In all cases though, it is
the ability of the hardware tomanage the modi�cation
of itselfthat makes the Cell Matrix a good �t.

� More generally, the interplay between C and D mode
allows for the possibility of, say, compiling high-level
code into a mix of software and hardware. This is no
different from a compiler that takes advantage of a
hardware �oating point accelerator (FPA): it simply
adds a layer of designing and implementing the FPA
alongside the machine code.

� Simulation of a Cell Matrix (yes, this is a thing!)
While simulation in software is straightforward, it is
also inherently slow, as performance degrades in pro-
portion to the number of cells being simulated. With a
hardware-based simulation, there is no inherent slow-
down as more cells are added to the simulation. But
being able to simulate a matrix allows, for example:

– the ability to freeze the system, or to step it
forward slowly while observing its state;

– the ability to examine internal cells (whose in-
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puts and outputs are normally only available to
neighboring cells);

– the ability to address individual cells and inter-
act directly with their truth tables;

– the ability to reset the state of part of the system
without performing a system-wide reset;

– the ability to ef�ciently record a history of sys-
tem states, with an option for rolling back to a
prior state;

and so on.
� The Cell Matrix can be used as aprocess improve-

ment driverfor support of aggressive manufacturing.
By targeting the matrix and using its ability for self-
analysis, it can help diagnose manufacturing errors
within itself, thus helping to debug the manufacturing
process itself. One recent theoretical example of this
is using self-assembly to build a physical matrix from
a collection of 3D cells. The cells are manufactured in
parallel, and then allowed to self-assemble into a 3D
array. In so doing, their orientation is uncontrolled,
meaning the �nal matrix has cells whose orientation
is effectively random. This makes it impossible to
load truth tables in a meaningful way: building a wire
to copy data from a given side to another requires
knowing whether those sides are on the north, south,
etc. of the cell, and without a �xed physical orien-
tation, this is unknown. However, the cells' ability
to introspect allows for circuits and algorithms that
let the cells discover and correct-for their own orien-
tation (in parallel). Seehttp://journal.frontiersin.org/
article/10.3389/frobt.2016.00002/full[19] for details.

� The Cell Matrix can be embedded alongside other
hardware (e.g. MEMS-based systems), and used as a
distributed control and communication network,with
all the inherent advantages of massive parallelism,
fault tolerance and scalability.

http://journal.frontiersin.org/article/10.3389/frobt.2016.00002/full
http://journal.frontiersin.org/article/10.3389/frobt.2016.00002/full
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3.2 Songline Processor
The central themes of the Cell Matrix – self-con�guration,
homogeneity of the cells, lack of centralized control, nearest-
neighbor interconnect – have proven interesting and useful
in different ways. Nonetheless, the underlying architecture
still derives from more standard models of computation: the
system is binary in nature; it employs a clock for reading
and writing cell memories; and, despite the interchangeabil-
ity of modes, each cell is, at any given moment,eitherin D
or C mode, i.e., executing its program or being programmed.

The Songline Processor (SLP) is an attempt to retain
those unique features of the Cell Matrix, while freeing the
architecture from the more standard characteristics. This
changes the C and D mode behaviors of the Cell Matrix as
follows:

� The values being passed from cell to cell are real-
valued vs. binary. This in itself is not such a big
difference. In a typical digital system, the binary
values are actually voltages, but the circuitry simply
restricts those voltages to one of two ranges (“high”
and “low”; or 1 and0). To pass a real-valued signal,
just think perhaps of a voltage that can vary anywhere
between 0V and 5V. So the D inputs and outputs are
real-valued.

� TheC inputs and outputs are also real-valued. This
requires a reinterpretation of how a cell's mode affects
its behavior. Instead of mode being a binary state (say
1=C Mode and 0=D Mode), the mode is now a mix
of C and D modes. In practice, this means a cell's
truth table may be partially perturbed by incoming
D values; and D outputs may be a mix of a cell's
program output and the program itself.

Implementing these changes requires changing the na-
ture of a cell's truth table. In a cell with binary inputs and
outputs, it is possible to exhaustively describe all possible
input combinations with a �nite number of rows. Adding
real-valued outputs doesn't in itself change this: the entries
in the truth table's output columns are simply real numbers
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instead of binary digits (bits). But since one cell's outputs
are connected to another cell's inputs, theinputsto a truth ta-
ble are now also real-valued. This means the set of possible
input combinations is (uncountably) in�nite. One cannot
write a table with a �nite collection of rows to represent all
possible input conditions: even for a single input, the set of
possible input values has the same cardinality as the set of
real numbers.

Viewed differently though, this is really not so mysteri-
ous: the “truth table” is now simply a real-valued function
of real variables (e.g.z = sin(x2 + y2)). Such a function,
however, is not easily stored in a table (unless the input
space is discretized). Moreover, even if the function were
somehow stored (say, as a curve or a surface), it's not clear
how to perform the C mode operations of reading and writ-
ing this function. For a curve (e.g. a function of a single
variable), one may sweep the input from its minimum value
to its maximum value, and thus read/write the entire essence
of the function in a �xed amount of time. For 2 or more
inputs, there's no obvious (continuous) way to sweep the
entire space of input combinations in a �nite amount of
time. Utilizing some sort of space-�lling curve may work,
but this is currently an unsolved problem.

By abandoning the system clock though, there are other
ways to transfer these functions: for example a 2D surface
can be used to transform a second surface so as to mimic
the �rst (imagine a 2D sheet of plastic, shaped to represent
the Z value ofz = f (x;y), and used as a mold to shape a
second target piece of plastic).

There are other possibilities as far as implementation:
further details are availablehere[3]. Despite these issues,
simulation is still feasible, and has been used to develop
and test some sample applications of the Songline Processor.
For example, a single cell can be used to multiply two inputs:
this is effectively an ampli�er. Differentiation, integration,
sample-and-hold, amplitude modulation, and other types
of signal processing are each easily achieved with just a
few cells. This suggests that the Songline Processor is,

https://drive.google.com/file/d/0B5jW1Lx4xAtYbmRTaE5Fa2VXZzQ/view
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in some ways, fundamentally different from a traditional
digital/von Neumann machine. These differences suggest
ways to extend the Zero-Bit Computer, as discussed in the
next chapter.

3.3 Exercises
1. Write the Boolean equations for a single-cell 2-1 se-

lector on the Cell Matrix.
2. Design a T �ip �op on the Cell Matrix.
3. Design a T �ip �op without using D �ip �ops. This

can be done with only 3 cells.
4. Design a 4 bit register.
5. Design a 4 bit register using only 5 cells (note that

the clock will need to be sent to multiple cells, and
the wires for routing the clock signal are not included
in the 5 cells).

6. Design a single cell for swapping the truth tables of
two neighbors.

7. Design a circuit on the Songline Processor for mea-
suring how similar two signals are to each other.

8. Design an SLP circuit for mathematically composing
two functions.

9. Design an SLP circuit for composing two functions,
and programming a cell with that new composite func-
tion.





4. Enhancing the ZBC

Recall that the ZBC is basically a transfer machine, pro-
grammed by naming pairs of SRC/DST addresses. The
machine repeatedly performs copies fromSRC! DST, but
despite this perhaps peculiar architecture, the system is
still essentially a von Neumann machine: it has a program
counter (PC), which is used to pull instructions from mem-
ory, which perform read/modify/write operations on the
memory. The PC is automatically incremented from instruc-
tion to instruction, but can also be explicitly loaded.

4.1 Removing the Ego

This architecture (as with most stored-program computers)
already contains one important aspect of the Cell Matrix:
the interchangeability of code and data. The contents of
memory can be interpreted as data or as instructions, and in
general, it is impossible from simply looking at the contents
itself to tell whether that contents is data or code. We wish to
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preserve this interchangeability (this is the “egoless” aspect
of EEXIST).

Despite this interchangeability, there is still an imper-
fection in this non-dualism. While a cell within the Cell
Matrix can operate ineitherC or D mode, it is, at any given
time, in only one of those modes. It's not possible for a
cell to be inbothC and D mode. The Songline Processor
makes some progress in this area, as its cells' C inputs ac-
cept a real-valued number, allowing a cell to operate in a
partial-C/partial-D mode. This is still imperfect: perfect
non-dualism suggests each cell befully in both C-mode and
D-mode at all times, i.e. that it can be both a subject and an
object simultaneously. The shortcoming is not really in the
architectureper se, but rather in the fact that instructions
operate one at a time, so that (as with the Cell Matrix), some
piece of memory may �rst be a piece of code, but then may
later be treated as a piece of data, and then still later as,
again, a piece of code. This is our �rst hint that sequential
execution will need to be abandoned.

4.2 Continuity of Time

Both the Cell Matrix and the Songline Processor have a
schism in how they process information: in (pure) D-mode,
everything happens asynchronously. Inputs cause outputs to
change immediately, and those outputs �ow into connected
inputs, and so on. All this happens without a clock. But
in C-mode, there is a system-wide clock which is used to
control the sampling and presentation of inputs and outputs
representing the new and old code. If we are to perfectly
merge C and D mode so that every piece of the system is at
all times (potentially) both a subject and object of a transfer,
we will need to decide whether everything is clocked or
everything operates in a data�ow mode. Using the natural
world as a model, it seems most natural to have the entire
system operate without a clock. This however makes the
notion of a PC mostly unusable. Consider a typical descrip-
tion of the PC: “the PC is incremented at the beginning of
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an instruction's execution cycle.” This description is very
clock-centric: the notions of “beginning” and “execution
cycle” each convey a sense of clocked operation.

But if the PC is eliminated, what determines which
instruction is being executed? The answer is simple:all
instructions are executed simultaneously. This is perhaps
a dif�cult thing to imagine. In the simple ZBC, each in-
struction speci�es a transfer fromSRC! DST, and this
transfer is an atomic unit: it begins, the transfer takes place,
and then the instruction is �nished. Rather than viewing
this as clocked, we may view it asdiscretized. Following
that line of thought, envisioning this as a clockless process
means viewing the transfer as acontinuousprocess. Thus,
we imagine that the transfer from SRC to DST happens over
a period of time1, as opposed to at a single instant (e.g. the
edge of a clock tick).

4.3 Continuity of Space

The most signi�cant difference between the Cell Matrix and
the Songline Processor is the change from discrete values
(1 or 0) to continuous values (coming from the set of real
numbers between 1 and 0). This continuity certainly makes
modeling and interfacing with with real world seem more
natural, and, being in some sense a superset of the discrete
version, seems reasonable to apply to the ZBC.

At �rst glance, this seems straightforward: let the values
stored in memory be real-valued, so that transferring from,
say,MEM[100] ! MEM[105] copies a real value instead of
just an integer. So ifMEM[100] contained the valuep, then
after the transfer, so doesMEM[105] But because code and
data are identical, what happens when the instruction pair
stored at locations 100 and 101 is executed? That would
imply a transfer fromMEM[p], whatever that means...

1“clockless” is very different from “timeless.” We still expect there
to be a time component to the operation of EEXIST: things do not
happen instantaneously, even though they are unclockes



38 Chapter 4. Enhancing the ZBC

Here again, the real issue is discretization, in particular
discretization of space. The conclusion is clear:spacemust
also be made continuous. In particular, the address space
in which instructions are stored should be addressable with
real values. This is a very different kind of memory system
from a typical von Neumann machine, as well as from the
Cell Matrix and the Songline Processor.

4.4 Extended Effects: Karma ( k )

Assuming that a (theoretical) memory can be designed to
be addressed by real numbers, there is an additional is-
sue that arises. Suppose that (just for the sake of argu-
ment) an instruction speci�es a transfer:MEM[1:414] !
MEM[2:71828] In the context described so far, the effect
of this instruction is like aDirac delta function, in that
it speci�es a transfer from precisely one point to another.
For example, while the data at location 2.71828 would be
loaded with the contents of location 1.414, the data at loca-
tion 2.7182800001 would be left unchanged, as would the
data at 2.7182799999.

This seems a bit unnatural, at least in terms of everyday
experience. It feels discontinuous, borderline chaotic: be-
cause if the instruction atMEM[2:7182799999] is unrelated
to the instruction atMEM[2:7182800000], a slight perturba-
tion in the coding ofMEM[1:414] ! MEM[2:71828] could
have a signi�cant change on the system's behavior.

In response to these notions, the idea of anextended
effectis introduced. Basically, each transfer instruction
MEM[SRC] ! MEM[DST] is interpreted as not only re-
questing that data be copied fromSRCto DST, but also
from SRC� d to DST� d, whered ranges over some in-
terval. However, thestrengthof that transfer weakens as
jdj increases. The exact meaning of “strength” will be de-
�ned in the next chapter. For now, suf�ce to say that not
all transfers have the same impact on memory: some will
barely change the contents ofMEM[DST], while others
may impact the contents signi�cantly.
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This distributed impact is termedKarma (k ), and ul-
timately relates to the impact a transfer instruction may
have on itself. Suppose, for example,MEM[10] contains
the instructionMEM[20] ! MEM[11]. The instruction at
location 10 is requesting data be copied from location 20
to location 11. Normally, only the contents ofMEM[11]
would be affected by this. In the presence of karma, loca-
tions near address 11 would also be affected. Ifk is large
enough, thenMEM[10] would also be affected, i.e., the
instruction's requested action is impacting itself. In other
words, there is an intermingling of effect with cause.

This completes the basic catalog of characteristics we
wish to have in the enhanced ZBC. What is required next
is a model for implementing these characteristics. The
chosen model is not necessarily practical, but will give us
a simulation target with which we can explore this system.
This model is called “EEXIST”: EgolessEXtended effect
contInuousSpaceTime.





5. EEXIST

Exploring this proposed architecture – studying its behavior,
potential applications, and so on – requires some sort of
model that captures the characteristics described above. The
proposed model (“EEXIST”) is neither unique nor necessar-
ily ideal, but it has worked well enough to begin exploring
these concepts.

5.1 Memory Structure

A traditional memory subsystem, viewed as a collection
of indexed holding bins, does not extend to a spatially-
continuous layout as needed for EEXIST. Instead, imagine
a porous substrate, capable of holding liquid at any place
throughout its extent: something like a long, rectangular
sponge with its largest dimension labeled “x” (�gure 5.1).
The amount of liquid present at some locationx would
represent the value stored at that address , i.e.MEM[x].
Let's clarify the notion of “amount of liquid”: ifx is truly a
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point location, then thevolumeof liquid at x tends towards
0 (asdx ! 0 in our volume calculation). But consider,
instead, theheightof the liquid at addressx, as shown in
�gure 5.1.

X

Figure 5.1: Image of EEXIST Memory as a Liquid-Filled Sponge.
The line shows the height of the liquid at differentx positions,
which codes the value of MEM[x].

The contents ofMEM[x] is now simply the height of
the liquid at positionx along the horizontal dimension. Not
that while this appears to change smoothly in the �gure, no
assumption is made about continuity of values.

Since memory will be addressed by a continuum of
values, there is no longer a notion of “next” or “adjacent”
addresses: we cannot treat memory addresses in pairs as we
can with a normal memory. So instead of codingSRC!
DST instructions in pairs of addresses, we store one transfer
instruction per address. To do this, we consider two differ-
ent liquids, named “SRC” and “DST.” Throughout, SRC
will be show as a red chemical, and DST as a blue chemi-
cal. At any given positionx in the medium, the mixing of
these chemicals is irrelevant, as is their location along they
dimension. For simplicity, we will usually show the SRC
chemical as situated below the DST chemical; but all that is
relevant is the height of the regions containing the SRC and
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DST chemicals at a givenx location.

X=24.5

SRC

DST

{
{

SRC=2.1

DST=1.7

Figure 5.2: Front-view of the Chemical Memory. The red region
corresponds to the SRC chemical, and the blue region corresponds
to the DST chemical. The relative position of SRC and DST (e.g.
which is on top) is irrelevant: theheightof each region (top to
bottom) codes the desired information.

Figure 5.2 shows a front view of this memory setup.
The lower red region shows the values of SRC, while the
upper blue region shows DST. For the position marked
x, it is the thickness of the SRC region that codes the ac-
tual SRC address. Similarly, the thickness of the DST re-
gion codes the DST address. In the �gure, at the point
x = 24:5, we have a SRC value of 2.1 and a DST value
of 1.7. Hence,MEM[24:5] codes a transfer instruction
MEM[2:1] ! MEM[1:7].

5.2 Discretization of Memory
In this example, since SRC and DST vary smoothly, the
instruction at, say,MEM[4:51] would be similar to what's
atMEM[4:5]. While there is no requirement for continuity
of the boundaries of the SRC and DST regions, having these
change smoothly allows us to approximate the system with a
series of discrete tubes1, as shown in �gure 5.3. Here we are

1This discretization does not contradict our original motivation for
making the spatial dimension continuous: it's merely a nod to ease of
simulation.
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breaking thex dimension into a series of thin regions, where
each region has a given height of SRC and DST chemicals
(where again, SRC and DST are color coded red and blue,
respectively).

...

X

SRC

DST

x{

Figure 5.3: Discretized View of SRC/DST Memory. The x dimen-
sion is broken into a set of small intervals, each viewed as a thin
tube containing both SRC and DST chemicals. SRC is shown in
red, DST is shown in blue.

This is only an approximation of an ideal EEXIST mem-
ory; but if we let these tubes grow thinner and more numer-
ous, then this model approaches the ideal. This discretized
model makes it easier to simulate the system though, and is
the model we'll work with throughout this text. It remains
an open question whether this model changes smoothly to
the ideal in the limit, or if the behavior of the system some-
how fundamentally changes in the pure-continuous case.
See Part III for this and other discussions of future-work.

In this context, for example, a memory transfer instruc-
tion such asMEM[5] ! MEM[6] would request that the
contents of memory at locationx = 5 be transferred to loca-
tion x = 6. This differs from a usual memory copy in two
ways:

1. The instruction actually speci�es atransferof con-
tents rather than a simple copy. In EEXIST, chemicals
(both SRC and DST chemicals) are moved from the
SRC location to the DST location; and

2. the transfer is not instantaneous, but rather occurs
over a period of time.

If the instruction executes for enough time, eventually
a complete transfer will have taken place, andMEM[SRC]
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will be empty, its contents completely moved toMEM[DST].
In practice, this may not happen, for two reasons:

1. The transfer instruction itself is likely to change, in
response to other transfer requests elsewhere in the
system (or possibly in response to itself); and

2. other transfer requests may continually be loading
chemicalsinto MEM[SRC].

5.3 Extended Transfer Effects: Karma ( k )
Viewing the memory of EEXIST in this way, transfer in-
structions themselves can be coded precisely (since the
level of SRC and DST chemicals are real-valued), but the
action of those transfers is approximated, since space is
a discritized approximation of a continuum. For example,
suppose thex domain ranges from 0 to 40 (inclusive), and is
broken into tubes of width 0.03125. Suppose alsoMEM[0]
speci�es a transferMEM[5:51] ! MEM[6:02]. There are
tubes corresponding to 5.50000 and 5.53125, but not to
exactly 5.51. Similarly, there are tubes corresponding to
6.00000 and 6.03125, but not to exactly 6.02. This raises
a question of how to map such a transfer to our discretized
space.

Rather than just rounding transfer addresses to the near-
est tube, EEXIST distributes the effect of a transfer request
to a region of tubes. Continuing the above example of a
transfer fromMEM[5:51] ! MEM[6:02], this instruction
would be interpreted as transferring from a region of mem-
ory locationscentered at 5.51to a region of memory loca-
tions centered at 6.02. Nearby regions will also be affected,
but to a lesser extent.

Figure 5.4 shows a pro�le of how much a transfer re-
quest fromMEM[5:51] will affect nearby regions. Ignor-
ing discretization of space, such an instruction will have
the greatest impact onMEM[5:51], but will also have a
(lesser) impact onMEM[5:50] andMEM[5:52]. The re-
quest will also affect (to an even lesser degree)MEM[5:49]
andMEM[5:53], and so on. The impact curve could be
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made bell-shaped, but for simplicity and speed of simula-
tion, a simple linear pro�le has been chosen.

E ect of
Transfer
Request

100%

0%
5.51 5.52 5.53 ...5.50... 5.49

Figure 5.4: Curve Showing Effect of a Transfer Request. The
most prominent effect will be centered atMEM[5:51], but nearby
locations will also be affected, with the effect dropping off linearly
for a distance ofk on either side of 5.51. For a transfer request
centered at locationp, the effect at locationx is denotedDk (x; p).

k controls the extent of this distributed effect (the “karma”
of the system). A transfer requestMEM[x] ! MEM[y] will
actually affect addresses fromMEM[x� k ] to MEM[x+ k ],
transferring chemicals from those addresses to addresses be-
tweenMEM[y� k ] andMEM[y+ k ]. The most pronounced
effect will be atMEM[x] andMEM[y], with the effect ta-
pering off to zero at e.g.MEM[x � k ] andMEM[y � k ].
This turns out to be useful far beyond the simple question of
mapping in discretized space: the karma of the system fun-
damentally affects the large-scale behavior of the system.

The extreme values fork are worth considering:
� If k = 0, transfers have a purely local effect. Each

transfer speci�es a point-source and point-destination.
This in some ways mimics the behavior of a tradi-
tional (discretely-address) memory.

� If k = Xmax, then any transfer will affecteveryregion
of the memory, though the effect diminishes away
from the speci�ed SRC and DST.

� If k = ¥ , then any transfer affects all regions equally,
i.e. a transfer request from
MEM[SRC] ! MEM[DST]
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causes an equivalent transfer
MEM[SRC� D] ! MEM[DST� D]
for all D.

k is generally �xed for the entire system, but in some
experiments it has been modi�ed over the course of a run. It
could also theoretically change from spatial point to point.

5.4 Discretization in Time
To allow for transfer requests to interact with one another,
chemical transfers do not occur instantaneously, but rather
over a period of time. For example, the transfer request
MEM[5] ! MEM[10] says to move chemicals from loca-
tion 5 to location 10. One may view this as connecting a
pipe between those locations, and allowing chemicals to be
siphoned off from location 5 to location 10. This transfer
happens at a �nite rate, so that over time the chemical level
at MEM[5] drops while the level atMEM[10] rises. The
details of this transfer are described below in theSimulation
Mechanicssection.

Such a transfer can be approximated by repeatedly in-
crementing time by a small amountDt, whereDt > 0. The
goal of course is to haveDt approach 0, but in practical
terms, the smallerDt is, the longer the simulation takes. If
we imagineDx andDt approaching 0, we can describe the
state of the system with a pair of equations.

We idealizek (karma) by using a curve for the effect
Dk (x; p) (the “effective diameter due tok ”) on MEM[x] of a

transfer request at locationp, and lettingDk (x; p) = e� (x� p)2

k

If k = 0 thenDk (x; p) is 0 everywhere except wherex = p.
As k increases, the effectDk (x; p) still has a maximum
value wherex = p, and tapers-off (but is non-zero) every-
where else. Ask ! ¥ , Dk (x; p) �attens out, and in the
limit, is equal to 1 everywhere. See �gure 5.5.

Let SRC(p;T) andDST(p;T) be the amount of SRC
and DST chemicals (respectively) at positionp and timeT.
We can now describe the theoretical behavior ofSRCand
DST with a pair of integral equations:
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(a)

(c) (d)

(b)

Figure 5.5: Idealized Effect ofk on Dk (x; p). For k = 0, this is
an impulse function (a). Ask increases, it becomes a bell-shaped
curve (b), distributing transfer effects over more and more space.
Ask approaches¥ , the curve widens (c) until it is a �at line (d).

SRC(p;T) = SRC(p;0)+
Z T

0

Z ¥

� ¥
e� (DST(x;t)� p)2

k � e� (SRC(x;t)� p)2

k dxdt

DST(p;T) = DST(p;0)�
Z T

0

Z ¥

� ¥
e� (DST(x;t)� p)2

k � e� (SRC(x;t)� p)2

k dxdt

5.5 Simulation Mechanics
Simulation of EEXIST has changed little since the begin-
ning of this project. This doesn't suggest that the chosen
knob settings are ideal; rather, it shows (perhaps) the rela-
tive insensitivity of the system to the particular choice of
settings.

Current settings are as follows:
� range ofx: 0.0 to 40.0
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� Dx: 0.03125
� Dt: 0.05
� k : typically 5, but sometimes valued between 2 and

10
If a transfer instruction requests a transfer to (or from)

location p, the effect onMEM[x] is de�ned byDk (x; p),
which is approximated with a set of linear functions, as
follows:

Dk (x; p) =

8
><

>:

0; if x � p� k
k �j p� xj

k ; if p� k < x < p+ k

0; if x � p+ k

(5.1)

5.5.1 Transfer Addressing

The �rst step in simulating the effect of transfer requests is
to determine the actual source and destination addresses for
each transfer. SupposeMEM[X] contains the instruction:
MEM[SRC] ! MEM[DST]. This can be interpreted two
ways:

1. SRCandDST can be theabsolutesource and destina-
tion addresses; or

2. SRCandDSTcan berelativeaddresses, i.e.,X + SRC
andX + DST are the actual addresses.

The choice of relative or absolute addressing is se-
lectable in the EEXIST API. It turns out though this distinc-
tion is immaterial: the introduction ofbias(discussed later
in this chapter) allows the emulation of relative address-
ing using absolute addressing. Unless stated otherwise, all
addressing is absolute throughout this text.

5.5.2 Transfer Type

Karma (andDk (x; p)) and the choice of transfer addressing
(absolute or relative) determine the �nal SRC and DST
addresses of a transfer. Once those addresses have been
determined, there are two ways in which the actual transfer
can take place:
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1. “SD �ow,” which speci�es a �ow rate from SRCto

DST based on theamountof SRC chemical; and
2. “Equilibrium �ow,” which modulates the �ow rate

based on thedifferencein the amount of chemicals at
SRC and DST.

The main difference is that SD �ow will eventually drain
the SRC location, whereas equilibrium �ow will eventually
cause the chemical levels at SRC and DST to be the same.
The choice of transfer type is selectable in the EEXIST
API, though almost all work to date has been done under an
assumption of SD Flow.

5.5.3 Main Simulation Loop

The basic simulation update loop proceeds as follows:
1. Look at each transfer instruction fromp = 0 to p =

40; supposeMEM[p] : MEM[SRC] ! MEM[DST];
2. calculate the corresponding change toMEM[SRC]

andMEM[DST]. For SD �ow, the equations are:
� DMEM[SRC] = � MEM[SRC] � Dk (x; p) � Dt �

Dx
� DMEM[DST] = MEM[SRC]� Dk (x; p) � Dt � Dx

For equilibrium �ow, the equations are:
� DMEM[SRC] = � (MEM[SRC]� MEM[DST]) �

Dk (x; p) � Dt � Dx
� DMEM[DST] = ( MEM[SRC] � MEM[DST]) �

Dk (x; p) � Dt � Dx
3. accumulate all theseD's, being careful not to let any

amounts go negative;
4. after evaluating all transfer instructions, apply the

accumulatedD's to each memory location.
Remember thatMEM[x] has 2 values associated with

it: a SRC amount and a DST amount. So eachD calcu-
lated above (for example,DMEM[SRC]) describesa pair
of changes: a change to the amount of SRC chemical at
MEM[SRC] and a change to the amount of DST chemical
atMEM[SRC].

Figure 5.6 (a) shows an example of an absolute SD
transfer operation. The instruction atMEM[5] speci�es the
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transferMEM[2] ! MEM[10]. Assuming for simplicity
k = 0 (so Dk (x; p) = 1 8x; p), Dx = :1 andDt = :1, this
single instruction requests a transfer of8� 1� :1� :1 = :08
SRC fromMEM[2] to MEM[10], and a transfer of9� 1�
:1� :1 = :09 DST fromMEM[2] to MEM[10], resulting in
the concentrations shown in �gure 5.6(b).

Figure 5.6: Sample Set of Transfer Requests. (a) shows an
initial con�guration, whereMEM[5] speci�es a transfer from
MEM[2] ! MEM[10]. (b) shows the results of that single trans-
fer in absolute, SD �ow mode withk = 0. Locations 2 and 10 also
specify transfer requests, but the effect of those are not shown.

Note the following:
1. Figure 5.6 only shows the effect of the instruction at

MEM[5]; the instructions atMEM[2] andMEM[10]
also affect memory.

2. The instruction atMEM[5] does not affect the con-
tents ofMEM[5]. The SRC and DST chemicals only
specify where a transfer should take place; those
chemicals are not directly affected by the transfer,
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unless the instruction (perhaps taking karma into ac-
count) refers to its own address.

Assuming absolute addressing and SD �ow, this will
transfer SRC and DST chemicals from location 2 to loca-
tion 10. Under equilibrium �ow, this would transfer SRC
chemicals from 2 to 10, and DST chemicals from 10 to 2.
With relative addressing, the instruction requests transfers
from 7 to 15 (5+ 2 to 5+ 10).

5.6 Effect of Karma
It's interesting to look at the effect of changingk on the
behavior of the system. For this analysis, a con�guration
that implements a 3 input exclusive-or (XOR) gate was em-
ployed. The nature of the results shown here seem typical
though, regardless of the speci�c system con�guration. Fig-
ures 5.7 - 5.18 show the chemical distribution in this system
after a number of timesteps have passed, for different values
of k .

A nominal value ofk = 5 has been used for most work
to date. There's no particular reason for this choice; it was
simply the initial choice, and it just hasn't changed. Figure
5.7 shows the chemical balance in the evolved XOR system.
The distribution is stable: it does not change over time,
unless the chemical balance is perturbed from outside the
system.

In �gure 5.8, k has been increased to 6. The chemical
balance changes, and the system stabilizes again.

Similar behavior is observed ask changes to 8 (�gure
5.9 and 15 (�gure 5.10.

At k = 25 (�gure 5.11), the chemical distribution be-
gins to �atten out. While still stable over time, a small
perturbation can be seen near the left end of the system.

Whenk increases to 27 (�gure 5.12), the perturbation
seen in �gure 5.11 begins to change. Figure 5.12 shows two
snapshots of the system at different points in time.

At k = 30 (�gure 5.13), multiple small regions are
changing between two states.
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Figure 5.7: System Behavior Withk = 5. The chemical balance
is stable, unchanging as the simulation is advanced.

Figure 5.8: System Behavior Withk = 6. The chemical balance
has changed fromk = 5 but has stabilized again.

Ask continues to increase, the chemical balance changes
to a series of peaks and troughs, which shift in position over
time (�gures 5.14 (a)-(c)).

Figure 5.15 shows the system whenk = 40. The behav-
ior is the same as that shown in �gure 5.14, but the shape of
the peaks has become more uniform.

These behaviors are not entirely unexpected. The me-
chanics of EEXIST instruction interpretation basically link
cause to effect;karma (k ) allows those effects to come
back and affect the cause. This allows the creation of feed-
back, which one typically expects to lead to either stability
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Figure 5.9: System Behavior Withk = 8.

Figure 5.10: System Behavior Withk = 15.

(as seen whenk is between say5 and25) or oscillation
(k > 25).

It is also interesting to look at what happens ask ap-
proaches 0. Figure 5.16 shows the system withk = 2. Here,
the chemical balance is beginning to change over time.

At k = 1, the system looks non-periodic. Figure 5.17
(a)-(d) shows 4 snapshots of the system at different (not
immediately-successive) timesteps.

When k = 0 the system looks fundamentally differ-
ent, and appears very disorganized and random (possibly
chaotic?). Figure 5.18 (a)-(d) show 4 snapshots of the sys-
tem, with no obvious patterns in the chemical balance.

This behavior is also not entirely unexpected: without
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Figure 5.11: System Behavior Withk = 25. The chemical dis-
tribution seems to be �attening out, but a small perturbation
appears near the left.

any feedback in the system, each instruction modi�ed the
system's chemical balance, but all instructions act entirely
on their own, without any direct consequence on themselves.
One might expect this to lead to a large number of seemingly
unrelated changes, which is one way of interpreting �gure
5.18.

5.7 Bias, Diameters

There are two useful embellishments to the above mech-
anisms for EEXIST. One allows an offset (“bias”) to be
applied to each location; the other allows speci�cation of a
�ow restriction (“diameter”) to each location.

Bias is a set of pairs of offsets (Bias.SRC and Bias.DST)
which are added to the SRC and DST locations speci�ed
by an instruction. Normally,Bias(x) = 0 8x, meaning an in-
struction such asMEM[2] ! MEM[10] refers to addresses
(centered at) 2 and 10. If that instruction is itself stored at
address 5 (as in �gure 5.6 (a)), andBias:SRC(5) = 20and
Bias:DST(5) = � 1 then the instruction actually requests
a transferMEM[2+ 20] ! MEM[10� 1]. As mentioned
above, Bias can be used to emulate relative addressing in an
absolute-addressed system: by settingBias(x) = x 8x, the
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(a)

(b)

Figure 5.12: System Behavior Withk = 27. Figures (a) and (b)
show two states between which the system alternates.

SRC and DST speci�ed by a transfer instruction are added
to the address of the instruction, thereby acting as if they
were relative addresses.

Diameter(x) speci�es a relative �ow metric for each spa-
tial location. In a transfer fromMEM[SRC] ! MEM[DST],
the �nal �ow (based onDk , Dx, Dt, etc.) is multiplied by
Diameter(SRC) � Diameter(DST). Normally,Diameter(x) =
1 8x. SettingDiameter< 1 causes less of a �ow rate than
normal; settingDiameter= 0 causes no �ow to occur. Note
that sinceDiameter(SRC) andDiameter(DST) are multi-
plied, settingeitherto 0 stops any �ow betweenMEM[SRC]
andMEM[DST]. This is useful, for example, in specifying



5.8 Exercises 57

(a)

(b)

Figure 5.13: System Behavior Withk = 30. Multiple regions are
changing across time.

input regions, whose chemical levels are set by external
sensors. Such regions can still affect other regions of the
system, but the chemical levels in those regions themselves
do not change under transfer requests from inside the sys-
tem. This will be discussed further in Part II.

Note that a negative diameter could theoretically be used
to reverse the direction of chemical �ow: this has not been
explored so far.

5.8 Exercises
1. Sketch a distribution of SRC and DST chemicals to

transfer all chemicals from[0;4) to [20;24), assuming
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(a)

(b)

(c)

Figure 5.14: System Behavior Withk = 35. The chemical balance
shows a series of peaks and troughs, whose positions shift over
time.

k = 0.
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Figure 5.15: System Behavior Withk = 40.

Figure 5.16: System Behavior Withk = 2. The chemical balance
is changing over time.

2. Repeat the above, but withk = 4. How does the
system differ from the case wherek = 0? What as-
sumptions do you need to make?

3. What would be the general effect on the system if
k < 0?

4. What is the general effect of settingSRC= DST?
5. What is the effect of settingBIASSRC= BIASDST =

C whereC is a constant? What if instead of being
constant,C is the location where the biases are being
set, i.e. at any locationx, BIASSRC= BIASDST = x?
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(a) (b)

(c) (d)

Figure 5.17: System Behavior Withk = 1. Figures (a)-(d) show 4
different timesteps. The system is changing over time, but doesn't
appear to be periodic.

Figure 5.18: System Behavior Withk = 0. (a)-(d) show 4 snap-
shots of the system's chemical balance. Without the effects of
karma, the system is running essentially open-loop, with each
instruction modifying the system but acting independently from
all other instructions.
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Part Two - Experiments





6. Overview, Links to
Software

With any proposed architecture, a natural question is: “what
can one do with it?” While EEXIST was developed as an
extension of more traditional computing systems, it's not
immediately clear how to do anything “useful” with this sys-
tem. Constructing individual transfers is simple (provided
karma is ignored), but since all transfers occur simultane-
ously, orchestrating a sequence of actions seems dif�cult.
While some work has been done in setting up rudimentary
behaviors (nominal cyclic changes, for example), general
schemes for con�guring EEXIST for speci�c behaviors
have yet to be discovered.

One of the early lessons in this search was that the
balance of chemicals is only part of the story. In trying
to con�gure a system that, for example, can perform logic
operations, �nding a particular con�guration of chemicals
that leads to the desired behavior is dif�cult. This led to the
introduction of bias and diameter, described at the end of
Part I.
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At that point, rather than trying to explicitly design con-
�gurations for certain behaviors, an evolutionary approach
was adopted: using genetic algorithms todiscovercon�gu-
rations, rather than engineering those con�gurations. This
approach has been used for all the work presented in the
experiments in Part II.

It is important to remember that at this point, the main
goal of this work isto explore and understand what EEXIST
is capable of. Even though an evolutionary approach has
been employed, this is not fundamentally research about
evolvable systems or GAs. The goal is to see what behaviors
EEXIST can exhibit.

6.1 Software Setup

6.1.1 Links

While this book is intended to primarily stand by itself,
there are references to software (mainly on GITLab) and
web pages throughout the discussion of experiments. These
can be clicked-on directly in the PDF version of this text.
For the printed copy, the reference numbers (e.g. [1]) refer
to links onhttp://book.songlinesystems.com(which means
you don't need to copy long URLs from the text).

All this code is built on top of anAPI [20] which pro-
vides access to a full EEXIST simulator, including graphi-
cal displays of system activity. There is standard JavaDoc
available for this APIhere[21]. More generally, the GIT
repository for the API is availablehere[22]

A more-general webpage that includes links to videos
discussing the EEXIST API is availablehere[23].

The root of the entire GIT repository is availablehere
[24], and contains not only the API but also the code and
data for all experiments described in this text.

6.1.2 General Code Organization

Within each directory of the GIT repository (e.g. EA2),
there are a number of �les:
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� README which often (but not always) contains help-
ful information about the contents of the directory;

� raw.txt and variations thereof. These usually contain
genome information for individuals in evolving pop-
ulations. The �le is human-readable, but not easily
(it's really a .CSV �le). raw.txt is often tagged with
additional information inside the �lename itself (e.g.
raw.xor.5.22.txt is the raw.txt from evolving an XOR
gate, and individual 22 generation 5 is considered
noteworthy for some reason);

� various human-readable �les containing output from
past runs, sometimes following manual processing;

� various scripts for monitoring output as it's being
generated (especially for the tic tac toe work);

� classes Gene and Genome which handle the basic
genetic aspects of individuals;

The Java code is built on top of the EEXIST API, and
uses the Gene and Genome classes. Beyond that, the code
is problem-speci�c, but there is a common structure to the
code, comprised of the following pieces:

� a pair of scripts (“c” and “r”) for compiling and run-
ning Java code, respectively;

� a set of code for running the evolutionary part of the
system, i.e. for developing a population that performs
well according to some criteria. This consists of the
following code:

– Main.java which is the main class for the evolu-
tion process; and

– Core.java which contains the particular code for
the experiments related to this directory.

� a set of code foranalyzingthe evolved population.
This code generally reads from a raw.txt-type �le
to clone from saved genetic information into a test
EEXIST system, and allows the user to interact with
that EEXIST system in various ways. Typical pieces
include:

– Analyze.java which is the main class (analogous
to Main.java)
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– AnalyzeCore.java which contains the particu-
lar code for analyzing the results of this set of
experiments (analogous to Core.java); and

– AnalyzeControl.java which contains code re-
lated to user-interactions with the cloned EEX-
IST system.

� a set of .jar �les if the experiments require interaction
with a server (e.g. LL.jar for simulating the lunar
lander game, and VEco.jar for simulating the virtual
ecosystem).

6.2 Genetic Setup
Early attempts at evolving EEXIST systems didn't work
very well. Part of this seemed to be related to the “spe-
cial nature” of certain areas of the memory. As chemicals
are drained from tubes, the instructions referenced by such
tubes refer to smaller and smaller SRC and DST addresses;
whereas upper addresses (e.g. close to40) are rarely refer-
enced unless a tube is very full. The larger issue may have
been that chemicals were serving two purpose, being used
both for inputs/outputs and for somehow coding the genetic
signature of an individual. It is in light of this latter con-
sideration that further parameters were introduced into an
individual's genome, in order to foster a genetic signature
independent of SRC/DST chemical levels in the system.

The basic genetic structure consists of a partition of
EEXIST's address space (currently[0;40]) into a set of in-
tervals (called “genes”), and within each gene, having some
sort of coded variation of chemical levels (SRC and DST),
biases (again SRC and DST) and diameters. The original
vision for this allowed a number of different codings: �xed
levels, linearly-changing levels, levels described by sinu-
soidal functions, and so on. The �rst implementation of a
gene used a simpli�ed version of this, consisting of just the
following:

� a speci�cation of a single variable: either chemical
amounts, bias amounts or diameter;
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� an initial value for the chosen parameter at the begin-
ning of the gene's region; and

� the slope of the linear change in the parameter across
the gene.

Provisions were made to allow genes to have a variable
size, and to allow for a small amount of random variation in
each of these parameters.

In practice though, only the bias amounts were modu-
lated as part of a system's genetic signature. Additionally,
all genes are the same length (4), and no variation from
the speci�ed linear change was allowed within each gene.
Thus, each gene is comprised of a pair ofbias gradients,
and the entire genome is a set of 10 such equally-sized bias
gradients.

Genes can be initialized with random values, or can be
cloned from existing genes.

Mating occurs by simple point-by-point averaging of
values (bias, etc.) from each parent. Mutation occurs (on
a gene-by-gene basis) parameter-by-parameter: a random
value is generated, and if it is less than the given mutation
rate (e.g. 10%), then the parameter is scaled by a random
amount between 0.5 and 1.5.

Most GA experiments involve an initial randomly-generated
population of individuals. Each individual is assessed on
some set of tasks, and scored based on its performance.
The topn (typically 10) individuals are retained verbatim
in the next generation, while all other individuals are re-
moved. The survivors are randomly mated pairwise (with a
possibility of mutation) to create the next generation.

6.3 Exercises
1. Use API calls to set up an EEXIST system that is

con�gured to do a single transfer. Run the code and
observe the behavior in the graphical displays.

2. Use the API calls to con�gure an EEXIST system
with a random initial con�guration. Introduce more
chemicals into the system and observe how the chem-
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ical balance changes over time. What sorts of behav-
iors can you produce?

3. Change the karma in the system while running the
above experiments.

4. Look at the code for Genome.java and Gene.java.
Where is mating performed? How would you change
the code to select genes from one parent or the other
instead of averaging them? How is mutation intro-
duced? What controls the number of genes?

5. How can you change this code to use something other
than bias gradients as the genetic signature of an indi-
vidual?



7. Experiments in Digital
Logic

7.1 Basic Setup

The basic goal in this set of experiments was to develop
EEXIST con�gurations that perform digital logic functions.
The general setup for each of these experiments was roughly
the same:

� space extends from coordinates 0.0 to 40.0, withDx=
:0625;

� a maximum value of 40 (for each of SRC and DST)
is imposed throughout the memory;

� individuals are distinguished by their genome, which
consists of 10 regions ofbias gradients, evenly spaced
between 0 and 40;

� an initial population of 250 individuals is generated
with random bias gradients;

� as each individual is loaded into EEXIST (one at a
time), its input-to-output behavior is monitored, and
compared to the desired function;

� inputs are fed in the regions[0;4], [8;12] and[16;20];
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� an input of 1 is coded as a value ofSRC= DST= 20;
an input of 0 is coded as a value ofSRC= DST= 5;

� all other locations are initially devoid of chemicals;
� the region[24;28] is considered the output region.

Chemical levels at each location in this region are
translated to a logic value: a chemical level ofSRC+
DST� 15 is considered a logic1; SRC+ DST< 10
is considered logic0; anything else is considered
invalid;

� an individual's score is incremented for each location
in the output region (stepped byDx = 0:0625) with
the correct logic level;

� after injecting input chemicals, the system is stepped
for 50 steps;

� the system is then stepped an additional 25 steps,
during which the output is monitored;

� for each address within the output region, the indi-
vidual's score (initialized to 0) is incremented if the
output has the correct value. Since the output region's
width is 4 andDx = 0:625, there are 64 addresses in
the output region, yielding a maximum score incre-
ment of 64 per timestep. Across 25 timesteps, this
gives a maximum increment of 1600 per test;

� for a 3-input system, all 8 possible input combinations
are tested; this gives a maximum total score of 12,800.

� after all individuals have been assessed, the top 10
are selected as survivors;

� pairs of randomly-selected survivors are mated by
averaging the start and gradient of each bias region,
until the new population is 250;

� a 5% mutation rate is applied to mating.

During the evolutionary process, the genome of each
individual is written to a raw output �le (raw.txt). This
allows individuals to be reconstructed for later testing.

The main code for the logic gate tests can be found
onhttps://gitlab.com/nickmacias/ChemComp/tree/master/
ChemCompAPI/EA2[4].



7.2 3-Input Exclusive Or Gate 71

7.2 3-Input Exclusive Or Gate
The �rst target circuit was a three-input XOR gate. This
is, in some ways, an easier target circuit than an AND,
OR, NAND or NOR gate. An AND gate, for example,
produces a 0 in 87.5% of all test cases: so a NOP system
(one that always outputs 0) would still score 11200 out of
12800. Thus, a NOP circuit (one which never transfers
any chemicals into the output zone) might out-perform a
promising but not-yet-fully-evolved AND gate.

Surprisingly, EEXIST evolved a perfect XOR gate in
only 5 generations! Individual 22 in generation 5 scored a
perfect 12800/12800 across all 8 possible input combina-
tions. Figure 7.1 shows the bias gradients for this individual.
Each triple of vertical lines shows an input or output region.
SRC bias is in red (the upper region, at the top of the graph),
DST bias is in blue (the lower region).BIAS= 0 at the top
of the graph, withBIASincreasing towards the bottom. For
reference, the titlebar shows the SRC and DST bias values
at the point indicated by the cursor arrow (which is gener-
ally the point in the graph whereBIASSRC+ BIASDST has
its maximum value).These conventions are used anytime
a bias graph is shown.

7.3 Nand Gate
The next evolve target was a 3-input NAND gate. A perfect
system emerged during the9th generation (individual 19).
The raw �le (raw.nand.10.0.txt) contains the genome for
each individual. Figure 7.2 shows the bias gradients for a
perfect individual.

7.4 Nor Gate
The next target circuit was a 3-input NOR gate. This was
expected to be the most challenging of the three logic gates,
because a NOR gate almost always outputs 0, so a circuit
that never transfers chemicals to the output region would
score 87.5%. This means an actual NOR circuit will need
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Figure 7.1: Bias Gradient For a Perfect XOR Gate. Source bias
is colored red, in the region near the top of the graph; destination
bias is colored blue, and shown below the source region. Bias
has a value of 0 at the top of the graph, and increases towards
the bottom. For reference, the cursor (whereBIASSRC+ BIASDST

has its maximum value) shows a point whereBiasSRC= 16:57
andBiasDST= 15:08. Each triple of vertical bars represents an
input or output region.

Figure 7.2: Bias Gradient For a Perfect Nand Gate. Source bias
is colored red; Destination bias is colored blue. Values at the
cursor are BiasSRC= 12:44and BiasDST = 18:23.

to score higher than this to compete with NOPs. This is
signi�cantly more challenging than a NAND gate, where a
NOP circuit will score 12.5%.

A perfect system emerged during the56th generation
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(individual 212). This took 5 times longer to evolve than
a NAND gate, and 10 times longer to evolve than an XOR
gate. The raw �le (raw.nor.56.212.txt) contains the genome
for each individual. Figure 7.3 shows the bias gradients for
a perfect individual.

Figure 7.3: Bias Gradient For a Perfect Nor Gate. Source bias
is colored red; Destination bias is colored blue. Values at the
cursor are BiasSRC= 19:27and BiasDST = 23:06.

7.5 Frequency Discrimination
Given that EEXIST seems to be con�gurable to perform
logic operations, the next task was to see if it could respond
to varying inputs over time. This test took the form of a fre-
quency discriminator (possibly inspired byAdrian Thompson's work
[6]). The main code for the frequency discriminator tests
can be found onhttps://gitlab.com/nickmacias/ChemComp/
tree/master/ChemCompAPI/EA3[5]. raw1000 contains the
history of individuals' genomes for this experiment.

The idea was to de�ne an input region, and toggle the
input at one of two frequencies, hoping to generate an output
of 1 or 0 based on the input frequency. The test setup was
as follows:

� k = 5;
� Two input frequencies are considered:

– high frequency changes every 4 timesteps
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– low frequency changes every 8 timesteps
� The input region is[0;4]: logic 1 is SRC= DST= 20;

logic 0 isSRC= DST= 5;
� The output region is[24;28]: chemical levels at each

location in the output region (stepped byDx = :0625)
are translated to logic levels:SRC+ DST > 15 is
interpreted as logic1; SRC+ DST < 5 as logic0;
anything else is an unde�ned logic level;

� an individual's score is incremented for each output
that is at the correct logic level. This means a maxi-
mum possible increment of 64 per timestep;

� The input is supplied for an initial 64 timesteps;
� for the next 1000 timesteps, the output is analyzed as

the input continues to toggle;
� The output goal is0 for high-frequency input,1 for

low-frequency input;
� a perfect score is64� 1000steps� 2 tests= 128000;
Evolution proceeded slowly, since each individual re-

quired 1064 timesteps per test. Nonetheless, after 8 gen-
erations, a near-perfect individual emerged (individual 37)
with a score of 127009/128000. Despite the imperfect score,
all the errors were in the �rst 19 timesteps: meaning the last
981 timesteps were perfect across the entire output region
(subsequent timesteps were also perfect). While further
evolution might have resulted in a perfect score under the
original criteria, the original requirements (initialization of
64 timesteps, followed by a test period of 1000 timesteps)
were essentially arbitrary, and thus the obtained result (ini-
tialization of 83 timesteps followed by a test period of 1000
timesteps) was deemed “good enough.”

Figure 7.4 shows a display of the test results. In this dis-
play, time is drawn vertically (top-to-bottom, then wrapping
back to the top), and space horizontally. SRC/DST amounts
are color-coded (SRC is red, DST is blue). The intensity of
each color re�ects the amount of chemicals at that position
in space and time. SinceSRC= DST throughout, the only
color is different intensities of purple.

The vertical lines delimit the input and output regions.
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Figure 7.4: Space (x) and Time (y) Display of Frequency De-
tection Test. Time runs from top to bottom (and re-wraps to the
top). Intensity relates to chemical amounts. The input region is
on the left, and re�ects the periodic input at a high (top half) or
low (bottom half) frequency. Output appears towards the right
(between the two vertical lines) and shows the desired output of0
for a high frequency input, and1 for low frequency.

The input region (on the left) shows the alternation between
high and low chemical levels: this re�ects the input signal,
which has a high frequency in the top of the display, and a
low frequency in the bottom. The output region (marked by
two vertical lines near the right of the display) shows the
corresponding output:

� In the top of the display, the output is low. While faint
traces of the input pattern are visible, the chemical
amounts translate to a clean logic0 throughout the
test.

� When the input frequency switches to low (approx-
imately halfway down the display), the output �rst
goes low (dark), but then raises to a high level (bright
purple) for the remainder of the time to the bottom of
the display.

Figure 7.5 shows the bias gradients associated with this
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individual.

Figure 7.5: Bias Gradients for Individual 37, Generation 8. Val-
ues at the cursor are BiasSRC= 17:90and BiasDST = 13:66.

7.6 Frequency Generation

The �nal experiment in this set of digital logic-related be-
haviors was to evolve a circuit that generates an oscillating
output. The setup was similar to other experiments, with a
few subtle differences:

� The input region was[0;4] and the output region was
[24;28];

� The system was stimulated for 16 timesteps by setting
theSRC= DST= 20 throughout the input region;

� For the next 1000 steps, the output region was moni-
tored. In this case, theaveragechemical level (SRC+
DST) was calculated across the region, and an aver-
age of 15 or more was considered a logic1, otherwise
the output was considered logic 0;

� An individual's score was incremented any time the
output changed. Across 1000 timesteps, the maxi-
mum possible score would thus be 1000.

The code and �les for this experiment can be found
onhttps://gitlab.com/nickmacias/ChemComp/tree/master/
ChemCompAPI/EA5[7]. The �le “raw” contains the genome
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history for each individual in this experiment. After 4 gen-
erations, individual 90 earned a score of 224, representing
on average an output change every 4 timesteps. This was
considered successful enough to conclude the experiment.
The output from this system is shown in listing 7.1:

Listing 7.1: System Output, Generation 4, Individual 90

10000000000000000000000000011110000000000000001111
10000000000000000000001100000000011000000001000000
00100000001000000001000000010000000010000000110000
00010000000110000000100000001100000001000000011000
00001000000011000000010000000100000000100000001100
00000100000001000000001000000011000000010000000100
00000010000000100000000100000001100000001000000010
00000001000000010000000010000000110000000100000001
10000000100000001100000001000000011000000010000000
11000000010000000100000000100000001100000001000000
01100000001000000010000000010000000110000000100000
00110000000100000001000000001000000010000000010000
00011000000010000000100000000100000001100000001000
00001100000001000000011000000010000000100000000100
00000100000000100000001100000001000000010000000010
00000011000000010000000110000000100000001100000001
00000001100000001000000011000000010000000110000000
10000000110000000100000001100000001000000011000000
01000000011000000010000000110000000100000001100000
00100000001100000001000000011000000010000000110000

Figure 7.6 shows the display-view output of this run (the
display is similar to �gure 7.4). As usual, the input region
is at the left, and the output is between the yellow vertical
lines towards the right. As can be seen (though not easily
in the printed version of this �gure), after the initial input,
the input region is mostly devoid of chemicals, while the
output region begins to toggle between high and low shortly
thereafter.

Figure 7.7 shows the bias gradients for this same indi-
vidual.

7.7 Another Look at Karma

Before moving on to the next set of experiments, it's in-
teresting to re-visit the effect of karma (k ) on the system:
in particular, to see if evolution is possible without karma.
Figure 7.8 shows the results of an experiment designed to
explore this. The system is trying to evolve a 3-input XOR
gate, using the usual general- and survivor-population sizes
(250 and 10), genome structure, etc. Withk = 0, the system
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Figure 7.6: Display Window for Generation 4, Individual 90. The
system is seeded with a dose of chemicals in the input region (left
side). Shortly thereafter, the output region (to the right of center)
begins to toggle between high and low amounts of chemicals. The
output toggles 224 times during 1000 timesteps (not all timesteps
are shown).

Figure 7.7: Bias Gradients for Individual 90, Generation 4. Val-
ues at the cursor are BiasSRC= 14:35and BiasDST = 21:12.

runs for over 1000 generations, achieving a most-�t individ-
ual with a score of 56% (i.e., it gives the correct result in
56% of the test cases). Remember that a NOP – a circuit
that always outputs 0 – will achieve a score of 50%. Hence
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the best individual after 1000 generations is performing
barely better than a circuit that always outputs 0.

Figure 7.8: Effect of Karma on Evolution of an XOR Gate.k is
initially set to0 and the system runs for over 1000 generations.
Evolution fails to produce an XOR gate that behaves much better
than a NOP. Whenk is changed to 5, the system quickly evolves
an almost-perfect XOR in just a few generations.

During generation 1079,k is changed to 5. Within the
current population at the time of the change, one individual
already performs at around 57%. Within 10 generations, the
best individual is performing above 90%; and after another
21 generations, the best individual is at 99%. Thus karma
seems to have a bene�cial impact on evolvability.

7.8 Exercises
1. Run the Analyze code on the �le raw.xor.5.22.txt,

and test individual 22, generation 5. Con�rm that it
functions as an XOR.

2. Analyze individual 0, generation 1. Compare its be-
havior to the above.

3. Look at the raw �le, �nd the entry for individual 22
generation 5, and compare the data in the �le with the
bias gradients shown in the simulator.

4. How fragile are the bias gradients? Can you truncate
to 6 digit and still get an OR? 4 digits? 2 digits?
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5. Try evolving an XOR with truncated bias gradients.
6. Change the code to evolve an XNOR (look for code in

Core.java around the comment that says “Test Func-
tion Here”). Run the analysis code to con�rm your
system performs an XNOR.

7. Try evolving with different values ofk . Try values
such as 10, 20, 30 and 40.

8. Try evolving some nonstandard logic functions.
9. Try evolving a 4-input gate.



8. A Tic Tac Toe Player

Following a series of experiments in emulating behavior
related to digital logic, the next series of experiments cen-
tered around seeing if EEXIST could learn to play tic tac
toe. A number of experiments were performed, with a lot
of variation in setup, �tness assessment, scoring, and so on.
The system quickly proved able to play a game of tic tac
toe; was able to perform better than a random opponent,
and was able to sometimes make good moves against an
expert opponent; but it never evolved to where it could play
without losing. The reasons for this will be discussed below.

The code and �les for these experiments can be found
onhttps://gitlab.com/nickmacias/ChemComp/tree/master/
ChemCompAPI/EA6[8].

8.1 Setup

The basic setup for all experiments was similar:
� The board is viewed as a grid of 9 squares, numbered
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as in �gure 8.1;
� Each square also corresponds to a region in the EEX-

IST address space: region 1 is[0;4); region 2 is[4;8)
and so on, up to region 8 which is associated with ad-
dresses[32;36). These are considered output regions;

� All 9 of these regions are initially devoid of all chem-
icals;

� The region[36;40] is used to start the system and
evoke EEXIST's �rst move (EEXIST always goes
�rst in these tests). To start the system, the region
[36;40] is �lled with SRC= DST= 15;

� The system is then stepped, and the output regions are
monitored for a move request (average ofSRC+ DST
� 10). If a region which isn't yet marked on the board
signals a move request, that is considered EEXIST's
move. The square is given EEXIST's mark, and it
becomes the opponent's turn;

� Once the opponent has selected a move, it is indicated
to EEXIST by saturating the selected region with
SRC= DST = 15 (the same as for the initiation in
[36;40]);

� Play continues until someone wins, or there are no
spaces left (in which case the game is a draw).

Note that no check is made to prevent illegal moves by
the opponent.

There is a maximum number of timesteps the system
will wait for EEXIST to move (typically 250 steps). If no
move is detected in that time, EEXIST is considered to have
forfeited.

The genetic algorithm was run with an initial popula-
tion of 250 random con�gurations, a survivor size of 10
individuals, and a mutation rate of 5% (the same as in the
digital experiments). The genome was again a set of 10
evenly-spaced bias gradients. Mating was performed by
averaging the parents' biases, point-by-point.

EEXIST was always “X” and the opponent was always
“O” (this doesn't affect anything, but is useful to know when
one is looking at the code).
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Figure 8.1: Layout of Tic Tac Toe Board. Regions denoted[x0;x1)
are the EEXIST address range associated with that square. In-
dexes0 through8 are used internally in the code; letters “a”
through “i” are used in playing an interactive game.

A lot of output was generated during these evolutionary
runs. Besides writing the genome of each individual (the
“raw...” �les), a graphical display of the board was also
produced. This was usually saved to a �le, and read of�ine.

This was also the �rst set of experiments to be run on
an external server. Since the server had no X interface, a
headless version of the code was produced (these are the
“...HL” variants of the directories).

8.2 Goals

It's important to remember that the overarching goal of this
work is not to play tic tac toe (a simple BASIC program will
do that); nor is it to study genetic algorithms or evolvability
per se. Rather, the goal isto learn what types of behaviors
EEXIST is capable of, to better understand its capabilities
and limitations. With that in mind, trying to evolve a system
that plays tic tac toe seemed an interesting endeavor; and as
usual, rather than trying to manually engineer EEXIST to
do this, an evolvable approach was explored.

The immediate goal was, as always, to evolve individu-
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als with higher and higher �tness measures. However, there
are a number of possible ways to assess �tness. For exam-
ple, the following are all slightly different goals for a tic tac
toe playing system:

� play better than a random opponent;
� play better than an “average” opponent;
� win more than you lose;
� never lose (but possibly draw sometimes);
� play a perfect game
An exact understanding of the goal(s) will help de�ne

the �tness metric. However, there are tensions among the
above goals:

� training against random opponents may lead to a sys-
tem that scores well, i.e., has a great �tness measure,
but fails miserably against a skilled opponent. For
example, winning 90% of all games against random
opponents might still allow for 100% loss against a
skilled opponent.

� training only for wins ignores the fact that not all
games are winnable. By moving �rst, one can be
guaranteed to never lose, but a skilled opponent can
always force a DRAW. Therefore, if training against
a perfect opponent, one would never see a single win.
This intuitively goes against the idea of penalizing
DRAWs.

� If the system is trained against every possible game,
and WIN is ranked higher than DRAW, it's possible
a system that is undefeatable by a perfect opponent
might not score as well overall as one that wins many
games against imperfect opponents.

In many cases, the system seemed to gravitate towards
local maxima, tending to �nd excellent performers among
groups of sub-optimal individuals.

Scoring was based on the outcome of each game, with
the following possibilities:

� winning;
� losing;
� ending in a draw; and



8.2 Goals 85

� forfeiting (no move made),
along with the following intermediate metrics:
� failing to take a winning move when presented with

the possibility; and
� failing to block an opponent's winning move when

presented with the possibility.
Different scoring metrics were used, based on the above

measures. For example:
� WIN = + 5
� DRAW= + 2
� LOSE= � 1
� FORFEIT= � ¥
Forfeiting was always treated as immediate dismissal of

the individual (they were given a �nal score that was nega-
tive). This was largely due to practical concerns: whereas
many moves are made after only a few timesteps, forfeiting
means waiting (e.g.) 250 timesteps before giving up on
EEXIST's making a move. This simply slowed down the
evolutionary process too much, hence such individuals were
quickly removed from the population by assigning them a
negative score.

Evolution depends on the nature of the population of
opponents:

1. in a totally random population, opponents make ran-
dom (legal) moves;

2. in a population of smart individuals, opponents make
winning moves if possible, but otherwise make ran-
dom moves;

3. in a population of smarter individuals, opponents
block EEXIST's winning moves if possible, but oth-
erwise make random moves;

4. in a population of perfect individuals, opponents al-
ways play a perfect game (and thus never lose);

5. in an exhaustive population, all possible games are
played.

Of course, combinations of these (such as 2 and 3) are
possible.



86 Chapter 8. Tic tac Toe

8.3 Results

Directories from these runs are available on GITLab, gener-
ally in subdirectories underneathhttps://gitlab.com/nickmacias/
ChemComp/tree/master/ChemCompAPIIn general, there
are two sets of code:

� Main.java and Core.java are the heart of theevolution-
ary system (along with support code: Game, Gene
and Genome);

� Analyze and AnalyzeCore are the counterparts to
Main and Core, but are used foranalysisof individ-
uals (along with AnalyzeControl, plus Game, Gene
and Genome).

The evolutionary code displays gameplay while it runs,
but also writes a raw �le of individuals' genomes. This
�le can be loaded into the analysis code, which allows the
user to play against an EEXIST-controlled opponent. In this
mode, the user speci�es moves by naming the square (using
the letters shown in �gure 8.1).

A number of different tests were run; only two are de-
scribed below.

8.3.1 EA7HL

The EA7HL directory contains the code and results for the
following test setup:

� 50 games per individual
� 250 timesteps maximum wait time for a move from

EEXIST
� Scoring: Win=2, Draw=1, Loss=0, Bad Move=-1

(where a “Bad Move” means failing to take a winning
move, or block an opponent from winning their next
turn)

� Final score is the simple sum of each game's score
With 50 games, and a maximum score per game of 2

(for winning), the best possible score for an individual is
100. Against a well-trained opponent, the best possible
score is 50 (50 draws). The best individual in this set of
experiments (�le “rawgood” generation 28 individual 0)



8.3 Results 87

scored 61. Figure 8.2 shows the bias gradients for this
individual.

This individual always moves in the middle square (“e”)
�rst. Based on the opponent's �rst move, the outcomes are
as follows:

Figure 8.2: Bias Gradients For EA7HL, Individual 0, Generation
28. Values at the cursor areBiasSRC= 6:79 andBiasDST = 1:84.

� a: game is a draw (but if the user doesn't block EEX-
IST, they can actually win)

� b: EEXIST �nds 2 ways to win, and eventually wins,
as long as the user tries to block

� c: game is a draw (but if the user doesn't block EEX-
IST, they can win)

� d: user ends up with a choice of 2 moves: one leads
to a win for the user, the other leads to a draw

� f: game is a draw
� g: game is a draw
� h: EEXIST �nds 2 ways to win: blocking one leads to

EEXIST winning; blocking the other leads to a draw
� i: game is a draw
This set of experiments was the �rst clue to the system's

sensitivity to training data. For example, when the user's
�rst move is “a,” EEXIST eventually is one move from
winning: but if the user doesn't block that move, EEXIST
may fail to take that move its next turn.

Figures 8.3 - 8.5 show three possible outcomes for this
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initial user move. In 8.3, everyone plays as expected, and
the game is a draw. This is the expected behavior. In 8.4,
the user fails to block EEXIST from taking a winning move,
and in fact EEXIST wins on that next move. In 8.5, the user
blocks EEXIST the �rst time, but fails to block EEXIST's
second possible winning move. In this case, EEXIST fails
to take that winning move, allowing the user to win on their
next turn.

         a|b|c                                 O|b|c
         -+-+-                                 -+-+-
         d|X|f                                 d|X|f
         -+-+-                                 -+-+-
         g|h|i                                 g|h|i

1. EEXIST starts in the middle       2. User moves in upper-left
-------------------------------------------------------------------

         O|b|c                                 O|b|c
         -+-+-                                 -+-+-
         d|X|X                                 O|X|X
         -+-+-                                 -+-+-
         g|h|i                                 g|h|i

3. EEXIST moves in f and is          4. User blocks EEXIST in d
  ready to win

-------------------------------------------------------------------
         O|b|c                                 O|b|O
         -+-+-                                 -+-+-
         O|X|X                                 O|X|X
         -+-+-                                 -+-+-
         X|h|i                                 X|h|i

5. EEXIST blocks user in g           6. User blocks in c
-------------------------------------------------------------------

         O|X|O                                 O|X|O
         -+-+-                                 -+-+-
         O|X|X                                 O|X|X
         -+-+-                                 -+-+-
         X|h|i                                 X|O|i

7. EEXIST blocks in b                8. User blocks in h
-------------------------------------------------------------------

         O|X|O
         -+-+-
         O|X|X
         -+-+-
         X|O|X

9. Game is a draw

Figure 8.3: Generation 28, Individual 0. If the user plays pre-
dictably (i.e. as a “smart” user would), the game will eventually
be a draw.

This illustrates some of the challenges of training the
system: if the training opponent always blocks, then EEX-
IST may be tripped up by an opponent who doesn't block;
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         a|b|c                                 O|b|c
         -+-+-                                 -+-+-
         d|X|f                                 d|X|f
         -+-+-                                 -+-+-
         g|h|i                                 g|h|i

1. EEXIST starts in the middle       2. User moves in upper-left
-------------------------------------------------------------------

         O|b|c                                 O|O|c
         -+-+-                                 -+-+-
         d|X|X                                 d|X|X
         -+-+-                                 -+-+-
         g|h|i                                 g|h|i

3. EEXIST moves in f and is          4. User does not block
  ready to win                       (moves in b instead of d)

-------------------------------------------------------------------
         O|O|c               
         -+-+-               
         X|X|X              
         -+-+-                          
         g|h|i                          

5. EEXIST takes the win         
         

Figure 8.4: Generation 28, Individual 0. If the user fails to
block when EEXIST is one move from winning, EEXIST takes the
winning move and wins the game.

but if the training opponent misses some blocks, EEXIST
may score unreasonably high due to these overly-simple
games.

8.3.2 EA8HL

The “EA8HL” directory contains code and output for a se-
ries of experiments where EEXIST plays against all sets
of possible opponent moves. Speci�cally, for each move
EEXIST makes, every legal opponent move will be con-
sidered. In theory, since there are 9 squares, and EEXIST
moves �rst, there are8 possible �rst moves by the opponent;
after EEXIST's2nd move, there are6 open squares for the
opponent to choose from; and so on. Thus there are amax-
imumof 8� 6� 4� 2 = 384possible games. In practice,
the number is fewer than this, since some of these games
may end before the opponent has made 4 moves.

An array (“moves[]”) is used to record the current set of
moves an opponent will make, and this is incremented after
each game. If a game ends before a total of 9 moves, the
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         a|b|c                                 O|b|c
         -+-+-                                 -+-+-
         d|X|f                                 d|X|f
         -+-+-                                 -+-+-
         g|h|i                                 g|h|i

1. EEXIST starts in the middle       2. User moves in upper-left
-------------------------------------------------------------------

         O|b|c                                 O|b|c
         -+-+-                                 -+-+-
         d|X|X                                 O|X|X
         -+-+-                                 -+-+-
         g|h|i                                 g|h|i

3. EEXIST moves in f and is          4. User blocks EEXIST in d
  ready to win

-------------------------------------------------------------------
         O|b|c                                 O|O|c
         -+-+-                                 -+-+-
         O|X|X                                 O|X|X
         -+-+-                                 -+-+-
         X|h|i                                 X|h|i

5. EEXIST blocks user in g           6. User does not block
                                     (moves in b instead of c)
                                       

-------------------------------------------------------------------
         O|O|c                                 O|O|O
         -+-+-                                 -+-+-
         O|X|X                                 O|X|X
         -+-+-                                 -+-+-
         X|X|i                                 X|X|i

7. EEXIST fails to take the win      8. User wins
  and moves in h instead

Figure 8.5: Generation 28, Individual 0. In this case, the user
blocks EEXIST's �rst winning opportunity, but fails to block its
second winning opportunity. EEXIST fails to claim that move,
allowing the user to win on their next move.

game tree is pruned to remove non-viable options.
Scoring was based on the following scale:
� Win=+2
� Draw=1
� Lose=-2
� forfeit=-1 (immediate end of testing, with a �nal score

of 0 for the individual)
� badmove=-1 (immediate end of testing, with a �nal

score of 0 for the individual); a “badmove” is failure
to block or failure to take a winning move

(In fact, various other scoring criteria were explored,
mostly non-scienti�cally. The above were the �nal values
used).
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Given such a potentially large number of games per
run, evolution proceeded slowly in this set of experiments.
As such, only 19 generations were developed. See the �le
“raw18,” generation 19, individual 0 for the top performer.
Figure 8.6 shows the bias gradients for this individual. Us-
ing the reference letters from �gure 8.1, the only way the
user can win is by moving in squares “f,” “a,” “b” and then
“c”; any other set of moves leads to a draw (assuming the
user makes “smart” moves, i.e., blocks when EEXIST is
one move from winning). Failing to block sometimes (but
not always) allows EEXIST to win.

Figure 8.6: Bias Gradients For EA8HL, Individual 0, Generation
19. Values at the cursor areBiasSRC= 16:22 and BiasDST =
13:31.

8.4 Lessons and Next Steps
One lesson learned from these experiments was the impor-
tance of choosing a good survival metric. In the end, there
didn't seem to be a single best way to score an individual
in a feasible amount of time. Some of the setups were al-
lowed to run for a few weeks, with the evolution continually
producing higher-scoring individuals, but the improvement
was very slow, and it wasn't clear if these improvements
were more than incremental. This was, in large part, a fail-
ure in the scoring system (which was somewhat biased to
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faster execution, i.e., not allowing individuals who forfeit
to survive, when in fact their genome might have eventually
contributed to a more-�t individual).

A second issue was the mapping of the board to EEX-
IST's spatial domain. The decision to have EEXIST's space
run from 0 to 40 was made in the earliest days of the sim-
ulation, and persisted throughout this work. Breaking that
range into 10 equal-sized intervals and using characteris-
tics of each interval as a genome was proposed in the �rst
genetic work on EEXIST, and has been used ever since.
However, given 9 squares on the tic tac toe board (and
an obvious mapping from board squares to regions in the
genome), and a10th region for initiation of the game, there
was, in some sense, no space left over for calculations other
than[36;40]. Any intermediate work being done via chem-
ical transfer was likely signaling (or contributing directly
to the eventual signaling of) a desired move. It may be
that having more unallocated space would lead to better
performance.

At this point though, it's worth going back and reconsid-
ering the basic question: “What are we trying to do?”; and
again, the answer is neither “Play tic tac toe,” nor “Study
genetic algorithms for game playing.” The goal is to study
EEXIST's capabilities. The fact that it will play a tic tac
toe game at all is somewhat remarkable; the fact that it can
lead most games to a draw, and sometimes force a win,
is perhaps even more interesting. The takeaway message
though is that EEXISTdoesseem able to exhibit a range of
behaviors: nothing that can't be done on a von Neumann
machine, but given its peculiar nature and the dif�culty of
manually con�guring the system, the fact that thereare
con�gurations that do interesting things is noteworthy, and
suggests further investigation may be worthwhile.

In continuing to pursue a genetic/evolutionary approach
though, the question of a “good” survival metric needed to
be addressed. Rather than ponder different weightings for
different actions, or how to combine individual test scores
into a composite score for an individual, a different ap-
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proach was adopted: testing individuals in an environment
where they might survive or perish; and using their survival
as the sole metric for passing on their genes. In other words,
test individuals in a system where they will either survive
or perish. As long as they survive, they can mate. If they
perish, their genes no longer contribute directly to future
generations of individuals.

A few years ago, I had a student named Jordan Curry,
who developed aVirtual Eco System(“VEco”) for a multi-
term project. When he demonstrated this to me, it seemed
like a powerful environment in which to explore various
algorithms for survival and development. In discussing this
later, in the light of EEXIST work, we decided it might
be interesting to drive each of his individual creatures with
an EEXIST. The system already incorporated a semblance
of mating, so this seemed like a natural framework for
exploring EEXIST.

To do this required two main developments though:

1. A new version of VEco, into which could be tied a
population of EEXIST individuals; and

2. A way to feed inputs to EEXIST over a long period
of time without saturating the system.

Item 1 simply required time and coordination. Item 2
is more of a general issue. Inputs are being modeled by
injecting chemicals into a region of EEXIST's memory; but
since those chemicals may be drained off to other locations
(due to various transfer commands), continually restoring an
input region's chemical levels to a �xed value could result
in more and more chemicals being injected into the system,
leading to saturation. This may or may not be a problem:
but it felt like it would lead to a weakening of a system's
effects over time. This was remedied using thediameter
option (discussed previously).

As a preamble to VEco, an intermediate task was under-
taken: using EEXIST to control a simpli�ed lunar landing
game. This is the topic of the next chapter.
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8.5 Exercises
1. Run the analyzer and see how well EEXIST plays.

Try playing as a skilled player, a random player, or a
deliberately unskilled player.

2. Come up with a new grading scheme and try to evolve
the system.

3. Change the size of input regions and re-evolve.
4. Make a2nd EEXIST system and play EEXIST against

itself. Does it get better, or plateau at some nominal
skill level?



9. Lunar Lander Control

As an exploration of a different problem space, experiments
were performed next to see how EEXIST might control a
simpli�ed lunar lander game. The setup was similar to the
old 1970sLunar Lander video game[9], but simpli�ed in a
few ways:

� the landing surface was �at;
� thrust is a simple binary control (on/off); and
� there is no horizontal control, only vertical.

The code and outputs for these experiments can be found
at https://gitlab.com/nickmacias/ChemComp/tree/master/
ChemCompAPI/EA10HL[10] andhttps://gitlab.com/nickmacias/
ChemComp/tree/master/ChemCompAPI/EA11HL[11]. The
system is setup as a client/server pair (another preparatory
step for VEco).

The code for the landing simulator (server) itself can be
foundhere[12] while the usual Main/Core/etc. in EA10HL
and EA11HL contain the client code driven by EEXIST.
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9.1 Simulation Setup
The simulator itself runs as a server: the code is inhttps://
gitlab.com/nickmacias/ChemComp/tree/master/ChemCompAPI/
LunarLander[12]. It creates a ServerSocket on port 1213,
through which the user or client code can send initial condi-
tions, step the simulation, turn the thrust on or off, and re-
quest information about the system's status (altitude, speed
and remaining fuel). The simulator also shows a graphi-
cal display of the ship's progress, and a crude visual dis-
play of landing speed (a red circle whose diameter corre-
sponds to landing speed). The simulator is runable as a jar
�le (“LL.jar”) in https://gitlab.com/nickmacias/ChemComp/
tree/master/ChemCompAPI/EA10HL[10].

The simulation begins with a craft at a given initial
altitude (e.g. 300), being pulled down under a constant
gravitational pull (-9.8, which of course sounds reasonable
on Earth, not so much on the moon), with a given initial
amount of fuel (30). Thrust is initially off, but fuel is burned
at a constant rate of 1 (unit) per second while thrust is ap-
plied. The craft's initial velocity is 0. A simulated timestep
of Dt = :125 is used to step the simulation.

The following equations summarize typical initial con-
ditions:

� ag = � 9:8 (acceleration due to gravity)
� aT = 12 (acceleration due to thrust)
� f = 30 (fuel)
� s= 300 (initial altitude)
� v = 0 (initial velocity)
� Dt = 0:125 (simulation timestep)
At each timestep, the system is updated as follows:
� f = f � Df � Dt if thrust is on
� a = ag if thrust is off; a = ag + aT if thrust is on and

f > 0 (total acceleration)
� v = v+ a� Dt
� s= s+ v� Dt
The simulation ends in one of two cases:
� s< 0 In this case, the craft has hit the surface. The

system's score for this run isj1=vj (so a lower impact
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speed gives a higher score);
� s> 1000In this case, the system has likely locked the

thrust on, will exhaust its fuel and eventually crash
into the surface. The system's score for this run is
1=smin, the reciprocal of the minimum altitude (so the
closer it got to the surface before reversing velocity,
the higher the score).

9.2 EEXIST Interface
The lunar lander simulation can be driven manually, via a
telnet connection to the server's port. A simple command-
line interface allows setting of thrust on or off, as well as
interrogation of current system system (altitude, velocity
and remaining fuel). The goal of this set of experiments was
to have EEXIST control the lander. This means supplying
current system information to EEXIST, and having it output
thrust commands (ON or OFF). The basic mechanism was
similar to that used in the tic tac toe player: certain regions
were de�ned as input and output regions, and chemical
levels corresponded to input and output values.

Three input regions are de�ned:
� FUEL: the amount of fuel remaining.

– Typical range: 30 to 0
– Input address range:[0;4)
– Formula:SRC= DST= f uel� 1:5

� ALTITUDE: the current altitude of the lander
– Typical range: 300 to 0
– Input address range:[8;12)
– Formula:SRC= DST= altitude=60

� VELOCITY: the current velocity of the lander
– Typical range: 10 (rising) to -30 (falling)
– Input address range:[16;20)
– Formula:SRC= DST= velocity+ 30

There is also an initialization region (“GO”), de�ned at
[36;40), which is initialized withSRC= DST= 20 at the
beginning of the experiment.

There is one output region de�ned: THRUST, which is a
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binary output, de�ned at[24;28). SRC+ DST is examined
at all points throughout that region, and the average value is
interpreted as follows:

THRUST=

(
ON if average� 10

OFF if average< 10
(9.1)

Simulation begins by populating the input regions, in-
jecting the GO signal, and initially stepping EEXIST one
timestep. Simulation then proceeds as follows:

1. the THRUST value is determined from the output
region;

2. the corresponding thrust command is sent to the sim-
ulator;

3. the simulator is stepped forward one timestep;
4. the simulator is queried as to the current state of the

system;
5. EEXIST's input regions are updated accordingly; and
6. EEXIST is stepped forward one timestep
The above steps are repeated until the craft lands, or its

altitude exceeds1000(these conditions are reported by the
simulation server).

If the craft has landed, the score isj1=vj wherev is the
impact velocity. If the altitude exceeds1000, then score is
0:1=altmin wherealtmin is the minimum altitude achieved
during the run (note that ataltmin the velocity must have
reached 0).

If multiple tests are run, the scores for all tests are mul-
tiplied to give the �nal score for the individual.

9.3 Sets of Experiments
Whereas in the tic tac toe system an individual was tested
against hundreds of opponents, in the lunar lander game
controller each individual was (in some cases) scored on
a single test only. The system was given control of the
craft's thrust; allowed to land the craft; and then scored on
its performance.
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A wide range of experiments were performed, with vari-
ous modi�cations tried, including:

� cutting thrust if the craft is close to the surface (since
it often seemed to get close and then reverse direc-
tion);

� changing the mutation rate during breeding (e.g. breed-
ing 50 individuals with no mutation; 50 individuals at
a mutation rate of 5%; 125 at 10%; and 25 at 25%);

� changing the scaling for scoring based on minimum
altitude;

� changing the population size;
� randomizing the initial altitude at the beginning of

each population test (but leaving it the same for all
members of that population); and

� testing each individual at a variety of altitudes.
It was this last variation that produced the most interest-

ing results, which are described in the next section.

9.4 Some Results
Among the experiments performed on this system, the most
interesting are contained in the �les raw8-raw11 (with corre-
sponding output �les out8-out11). All these runs were made
with initial fuel=30, g=-9.8, thrust=12.0, andDt = 0:125.

raw8 was developed using an initial altitude of 300.
Individual 0 (generation 87) lands at an impact speed of
-0.931 (this is considered a successful landing). However,
the performance is extremely sensitive to initial velocity: at
an initial altitude of 299, the impact velocity is -2.4; while
at an initial altitude of 301, the impact velocity is -42.8!

Figure 9.1 shows the impact velocity for a range of
initial altitudes. As can be see, while the performance is
good at an initial altitude of 300, it degrades quickly away
from that point. Figure 9.2 shows the bias gradients for this
individual.

In �le raw9, individuals were assessed at a range of
altitudes, from 295 to 305 (by 1s, i.e. 11 different initial
altitudes). Each run was scored, and the individual's �nal
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Figure 9.1: Impact Velocity vs Initial Altitude, raw8, Generation
87, Individual 0.

Figure 9.2: Bias Gradients for raw8, Individual 0, Generation 87.
Values at the cursor are BiasSRC= 14:32and BiasDST = 15:64.

score (which was used for the evolutionary process) was the
product of scores from each run.

Figure 9.3 shows the impact velocity for different initial
altitudes. In this case, the performance seems to drop off
linearly away from 300, continually degrading below 300,
while initially degrading and then improving towards 400.
Figure 9.4 shows the bias gradients for this individual.

In raw10, each individual was assessed at 11 different
initial altitudes, from 275 to 325 (by 5's). In this case (see
�gure 9.5), the performance remains good at values below
300, all the way down to an initial altitude of 200; while
at altitudes greater than 300, the performance degrades
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Figure 9.3: Impact Velocity vs Initial Altitude, raw9, Generation
44, Individual 0.

Figure 9.4: Bias Gradients for raw9, Individual 0, Generation 44.
Values at the cursor are BiasSRC= 10:05and BiasDST = 21:62.

steadily (but remains good in the training range of 275-325).
Figure 9.6 shows the bias gradients for this individual.

If raw11, each individual was assessed on a range of
initial altitudes, from 200 to 400 (by 10's). As can be see in
�gure 9.7, the performance is good throughout that entire
range, except for a few curious spikes near 300. Figure 9.8
shows the bias gradients for this individual.

9.5 Diameter Restriction
EA11HL (https://gitlab.com/nickmacias/ChemComp/tree/
master/ChemCompAPI/EA11HL[11] contains similar ex-
periments, except that the diameter of the input regions
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Figure 9.5: Impact Velocity vs Initial Altitude, raw10, Generation
104, Individual 0.

Figure 9.6: Bias Gradients for raw10, Individual 0, Generation
104. Values at the cursor areBiasSRC= 11:25 and BiasDST =
5:89.

Figure 9.7: Impact Velocity vs Initial Altitude, raw11, Generation
56, Individual 0.
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Figure 9.8: Bias Gradients for raw11, Individual 0, Generation
56. Values at the cursor areBiasSRC= 7:36 andBiasDST = 5:43.

has been set to 0. With a diameter of 0, no chemicals can
�ow into or out of those regions. This does not however
mean that those regions don't affect anything: the chemical
amounts (offset by the biases) still dictate transfers from
SRC! DST; but the chemicalswhich code those instruc-
tionsdo not themselves change, and are never transferred
anywhere.

This restriction prevents system saturation. Consider,
for example, the fuel input region. At each timestep, the
chemical levels in this region should re�ect the amount
of remaining fuel. Suppose though that somewhere there
are transfer instructions that are removing chemicals from
that region. The external system will continually add new
chemicals to the system in order to set the fuel region's
chemicals to the appropriate level. As those chemicals are
transferred to other regions, the total amount of chemicals
in the system will increase. After a long enough run, the
system may become so �ooded with chemicals that it is
no longer possible for it to function properly. Similarly, if
chemical are transferredinto an input region, then they will
be removed from the system, and the memory may become
chemical-starved. Restricting the diameter to 0 eliminates
these possibilities.

At �rst, it seemed that this diameter restriction made
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evolution dif�cult: but in fact, the system evolves as well
as with the unrestricted diameters. See raw0diam, genera-
tion 141, individual 0, which was trained at a single initial
altitude of 300. Figure 9.9 shows the behavior of individual
0, generation 141, when tested against different initial alti-
tudes. As can be seen, the behavior degrades slowly below
300; but above 300, it drops off rapidly. In fact, the system's
best performance is at an initial altitude of 304. At 305, it
gets very close to the surface, and then engages the thrust
fully, runs out of fuel, and free-falls back to the surface at a
high impact speed. This is the behavior at larger initial alti-
tudes. In this case, the “script” seems to be well-established:
it's trying to descend a distance of 304, achieving a velocity
of 0 at the bottom. At an initial altitude of 305, it drops
down to a minimum altitude just above the surface, but
instead of landing, then engages the thrust until all fuel is
spent, and then crashes to the surface.

Figure 9.9: Behavior of EEXIST-Controlled Lander with Input
Diameters Set to 0.

9.6 Conclusions

It does seem EEXIST is able to control a lunar lander game,
though the experiments tended to wander into the “exami-
nation of GA dynamics” area rather than studying EEXIST
itself. Nonetheless, it's interesting to observe that with the
right set of bias gradients, the system can successfully land
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for a range of initial altitudes. As usual, there's no yet-
apparent reason for the particular pattern of bias gradients
emerging from different training methods.

The system clearly looks non-linear, i.e., the perfor-
mance doesn't always change smoothly with changes in
initial altitude. It's also clear the system “doesn't under-
stand what it is doing.” It doesn't seem to engage the thrust
in direct response to speed or altitude, for example. This
is evidences by making small changes in the acceleration
due to thrustaT , which wildly degrades the performance
of the system. Similarly, decreasing the timestep causes
the craft to come to a near stop at a higher altitude, and
then free-fall with the thrust disengaged. This suggests the
system may be essentially “following a script” rather than
directly responding to input parameters (speed, altitude and
remaining fuel). On the other hand, changing the initial
amount of fuel (say increasing it, which should have no im-
pact on the lander's performance) signi�cantly changes the
system's behavior: suggesting that the amount of remaining
fuel is being factored into the system's calculations in some
manner.

Part of the above can be explained by the limited size
of the training sets (comprised of 1, 11 or 21 different
initial altitudes). The next set of experiments – the Virtual
Eco System (“VEco”) – will address this shortcoming, by
continually training each individual.

9.7 Exercises
1. Run the LL server and talk to it with telnet. Try to

land the ship manually.
2. Run the analyzer and explore the different “raw” �les

(see README for details on how each �le was evolved).
Test these with the conditions they were evolved with,
then test them with different initial conditions (fuel,
altitude, initial speed).

3. Try evolving with very little initial fuel; can you get
the system to evolve a more nuanced solution?
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4. Try evolving with a variety of initial fuels, and see if
you get a more robust system (one that is less sensitive
to the initial amount of fuel).



10. Virtual Ecosystem

For an online synopsis of this project, seehttp://songlinesystems.
com/VEco.html[25].

10.1 General Idea

The next set of experiments were based on the idea of a
virtual ecosystem (“VEco” ). The basic setup consisted of
a virtual world in which creatures would:

� move around, expending energy as they move;
� absorb energy (“food”) if they encounter it;
� attack other creatures; and
� mate with other creatures.
Each creature was controlled by its own EEXIST sys-

tem. Information about a creature's immediate vicinity was
supplied as inputs to EEXIST, and an output region was
monitored to read EEXIST movement requests.

The setup was similar to the lunar lander game, in that
a client/server model was used. The server handled all
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bookkeeping on the environment (appearance/consumption
of food), individual creatures (birth, location, energy level
and death) and their interactions (attacking, mating).

Note that there is no need for a separate survival metric
in this setup: survivalis the metric. If a creature runs out of
energy, it dies and is removed from the population. If it still
has energy, it remains in the population, and may eventually
mate, passing on its genes to a new generation.

Most action occurs when a creature moves forward. At-
tempted movement onto an empty square simply changes
the creature's location, and decreases the creature's energy
by 1 unit. If this completely depletes a creatures energy, the
creature dies.

Movement onto a square containing food increases the
creature's energy. Movement into a square occupied by
another creature has one of two possible effects:

� if the two creatures are facing each other, mating
will potentially occur, with a new offspring appearing
behind the creature that is trying to move;

� if the two creatures arenot facing each other, the mov-
ing creature will attack the other creature, absorbing
energy from it.

All code and outputs for these experiments are found on
the VEco sub-directory, athttps://gitlab.com/nickmacias/
ChemComp/tree/master/ChemCompAPI/VEco[13].

10.2 Client/Server Setup
The server maintains ann� n grid of squares comprising
the universe in which creatures exist. A simple command
line interface allows a client to interact with the universe,
using the following commands:

� R - reset the simulation
� B 1 or 0 - allow or disallow breeding
� E - deposit a random amount of energy on a randomly-

selected square
� C - create a new creature. The server returns the new

creature's integer ID
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� id T R G B BL - set the color of the individual whose
id is “id.” RGB are the red, green and blue colors; BL
is 1 for blinking, 0 for non-blinking

� id O - mark this individual as old (yellow eyes)
� id L or id R - indicate that individual “id” wishes to

turn left or right
� id F - indicate that individual “id” wishes to move

forward one square. The return value from the server
is one of:

– K id - the moved individual killed another crea-
ture, whose ID was id

– M idparent idnew - the movement resulted in
mating. idparent is the ID of the other creature
involved in the mating; idnew is the ID of the
new creature. Note that this information can be
used by the client to merge parent genomes for
the offspring.

– OK - nothing special happened
� id Q - query the individual. The server returns a set of

information about the individual and its surroundings
(detailed below).

� D daylight - sets the daylight level of the system
according to the value of “daylight” (0-25)

� Q - shutdown the server and exit

10.2.1 Query Response

The “Q” command asks the server to convey information
about the area surrounding a creature. The response string
is a single line, consisting of the following:

� the creature's current energy level (0 if the creature is
dead)

� a single space
� 24 characters, describing each square in a5� 5 region

centered at the creature. Possible characters are:
– “-” for an empty square
– “*” for a wall
– “F” for a square containing food
– “N,” “S,” “W” or “E” for a square containing a
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creature; the speci�c value indicates the direc-
tion in which that creature is facing.

The order in which this information is returned is shown
in �gure 10.1. The creature's position is represented by “C”
in the middle of the region. In the return string from the
Q command, the �rst of the 24 characters returned corre-
sponds to the square labeled “1,” followed by the character
corresponding to the square labeled “2,” and so on.

12 13 14 15 16

11 2 3 4 17

10 1 C 5 18

9 8 7 6 19

24 23 22 21 20

Figure 10.1: Ordering of Neighbors for Return String from the
Query Command. The “Q” command returns the creature's en-
ergy, followed by a space, followed by 24 characters representing
the state of each of the 24 regions shown. Information is presented
for square “1” followed by “2” and so on.

10.3 Additional VEco Mechanics
The above description covers the basic movement, breeding
and death of creatures within VEco, most of which are
handled by the server. Beyond these details, there are many
variations possible, some of which were explored, some left
for future work. Note that some of these are handled by the
client code.

� Walls are currently impenetrable. A wrap-around
model is another possibility, but this has not been
explored.
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� No energy is expended in turning, but a turn is always
followed by a request to move forward. If the forward
move is blocked though, the total energy expenditure
remains 0.

� Mating is only allowed if both parents have at least a
certain amount of energy.

� In some cases, mating is only allowed among parents
who have reached a certain age.

� In some cases, mating can occur without parents com-
ing into proximity of each other. At random intervals,
new creatures are introduced into the population, but
their genome is set to be a mix of the genomes of two
randomly-selected parents.

� Creatures are processed in round-robin fashion, but
newly-created creatures are always positioned at the
head of the processing queue.

10.4 EEXIST Interface
Each creature has an EEXIST system associated with it.
There is a client that keeps track of each individual creature
(as does the server), and is responsible for communicating
with the server. The client conveys information about a
creature's neighborhood to its associated EEXIST system;
steps EEXIST; and reads any requested action indicated by
EEXIST.

The usual genome structure is employed, consisting
of 10 equally-spaced regions, each with its own pair of
SRC/DST bias gradients. The address space is split into
�ve input and one output region, as follows:

� [0;4) input region R1 (�gure 10.2);
� [4;8) input region R2;
� [8;12) input region R3;
� [12;16) input region R4;
� [16;20) input region R5; and
� [24;28) output region.
Regions R1-R5 are used to inject information about a

creature's environment into EEXIST. R1, R3 and R5 de-
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R3

R1 C R5

Figure 10.2: Input Regions for VEco. For a creature centered at
“C,” information about R1, R3 and R5 are sent into the creature's
corresponding EEXIST system.

scribe the state of the corresponding regions shown in �gure
10.2. For each of these regions, the following SRC and DST
chemical levels are set:

� SRC= DST= 5 is the square is empty;
� SRC= DST = 25 is the square contains a creature

that is facing you (and thus is a potential predator or
mate, depending on which way you're facing); and

� SRC= DST= 15otherwise (square contains a wall,
food, or a creature that is neither a threat nor a poten-
tial mating partner).

Initially, R2 and R4 conveyed further neighborhood
information; but these were later changed to allow input
of more-general information. Region R2 is a general-area
input. For the 24 squares around the creature, the number
of squares that are not empty (i.e. contain a wall, food, or
a creature (in any orientation)) are counted, and SRC and
DST in region R2 are set to that count. Thus, R2 shows,
roughly, how crowded the area is (though that crowding
could be bene�cial, dangerous or benign).

In the initial runs of the system, creatures tended to move
to the edges of the universe and sit there. If all inputs are
based on the contents of the surrounding squares, and noth-
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ing is moving, then none of those inputs ever changed, and
thus creatures that stopped moving (often, but not always,
because they were facing a wall) would never start moving
again. This might be recti�ed by having energy levels drop
over time, while also giving a creature information about its
own energy level. This however felt a bit “rigged.” Instead,
a new input was introduced: a cyclic “daylight” variable.
This variable runs repeatedly from 0 to 25 and back to 0,
changing every 50 ticks of the simulated universe (one tick
per creature update). In region R4,SRC= DST= daylight.
This helps keep the system from becoming stagnant, by
changing the inputs to a creature even if the creature is not
moving and nothing is changing in nearby squares.

There is a single output region de�ned at[24;28), which
is interpreted as a movement request by the creature. The
averageSRC+ DST is calculated for this region, and used
to determine an output as follows:

� 5 � SRC+ DST< 10 turn left and move forward;
� 10� SRC+ DST< 15 turn right and move forward;
� 15� SRC+ DST just move forward;
� otherwise take no action.

10.5 Experiments
As usual, a number of experiments were run, with a lot
of variations in the experimental setup. Throughout the
run, genetic information was written to a �le, as was a
synopsis of birth and death events. The general setup for
an experiment was to initially seed the population with a
set of individuals with randomly-generated genes, and then
allow them to interact throughout time. The server presents
a graphical display of the universe, such as shown in �gure
10.3.

The client has a user interface, where command-line
instructions can be givenby the user(note that this is dif-
ferent from the command-line interface to the server, which
the client controls). The following commands are available
to the user:
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Figure 10.3: Sample Graphical Server Output. Creatures are
shown in red; eyes are drawn to indicate which way the creature
is facing. Green squares represent food. ID numbers are shown
near each creature, and the creature's energy level is shown below
the ID (smaller text). The intensity of the creature also correlates
to its remaining energy: creatures with more energy are drawn
brighter than those with less energy.

� ? - display a help message
� t id - tag an individual (default coloring)
� t id R G B - tag an individual with the given color
� e id - show the general EEXIST display window for

the given individual's EEXIST
� e2 id - show the detailed SRC/DST window for the

given individual
� f �lename - open the given �lename for reading ge-

netic information
� c src dst - clone genetic material from individual “src”

to individual “dst”
� breed on - enable breeding
� breed off - disable breeding
� pause - pause the simulation
� run - resume the simulation
� d - inject a drone (see the subsection below)
� @�lename - run commands from the named �le
� reset - reset the simulation (client and server)
� #anything - create a comment (not interpreted)
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� Q - quit immediately
In addition to a text/command input area, the client's

control panel includes sliders for adjusting:
� the system karma (this affects the karma of all existing

individuals, as well as creatures created in the future);
� the initial population size;
� a delay between updates (to make it easier to see

what's happening in the graphical output); and
� the number of EEXIST timesteps used to update one

creature before moving on to the next creature.
There is also a checkbox for pausing the system (note

that the state of this check box is not affected by the pause
and run commands), as well as buttons for resetting the
system and for exiting the simulation.

10.5.1 Drone Interaction

After letting a population of individuals develop and evolve,
it seemed like it might be useful to be able to interact with
the population, so adronecapability was added to the sys-
tem. The “d” command requests injection of a drone into
the population. The drone is highlighted, and can be maneu-
vered with the f (forward), l (turn left) and r (turn right) com-
mands. Note that unlike other commands, these keystrokes
do not need to be followed by ENTER: they are single-key
commands (but holding the key does not successfully regis-
ter as multiple key presses). This makes it relatively easy
to manipulate the drone inside the simulated ecosystem,
allowing the user-controlled drone to eat food, to approach
and attack other creatures, and so on. The “q” key is used to
exit the drone-control mode, and return to the regular com-
mand line interface (where ENTER is required to execute
a command). Upon leaving drone-control mode, the drone
remains in the population, but does not move nor mate.

It is dif�cult to meaningfully quantify the behavior of
the population in response to drone actions, but subjectively,
it appears that the populationdoesrespond to the drone's
movements. In some cases, the older creatures seemed to
move away as the drone approached. This behavior was
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interesting enough to encourage further experimentation, as
described in the next sections.

10.5.2 Longevity Data

As the system runs, new creatures are given sequential ID
numbers, thus the ID shows relative age of individuals (crea-
tures with higher IDs being younger than those with lower
IDs). An initial analysis of the population can be made by
looking at the distribution of individuals' IDs.

Figures 10.4-10.11 show graphs of age vs. ID number
at different points during the development of the ecosystem.
Figure 10.4 shows the population at 100,001 cycles. The
population has some individuals with an age around 100,000
(these are likely �rst-generation individuals), as well as a
number of younger individuals (those with IDs above 100).

Figure 10.4: Graph of Individual IDs vs. Age, Cycle 100001. A
number of members have survived from the beginning of the run.

Figure 10.5 shows the system at cycle 200001. The older
individuals remain, but there are more younger creatures.
This trend continues through �gure 10.8, at cycle 1000001.

If �gure 10.9 (cycle 2000001), the oldest individual
is younger than 2000001 cycles. It appears the previous
longest survivors have died, and the age distribution of the
remaining population is becoming linear.

In �gure 10.10 (cycle 3,000,001), the oldest individual
has an age below 1,000,000, and the age distribution looks
linear. Figure 10.11 shows the system at cycle 6,000,0001.
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Figure 10.5: Graph of Individual IDs vs. Age, Cycle 200001.

Figure 10.6: Graph of Individual IDs vs. Age, Cycle 400001. A
lot of the original population has died.

Figure 10.7: Graph of Individual IDs vs. Age, Cycle 700001.
Most of the population's ages follow a roughly linear distribution.

The oldest individual has an age below 500,000, and age
distribution is close to linear.

The trend seems to be that as the system ages, the oldest
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Figure 10.8: Graph of Individual IDs vs. Age, Cycle 1000001.
Most of the population is younger than 400000.

Figure 10.9: Graph of Individual IDs vs. Age, Cycle 2000001.

Figure 10.10: Graph of Individual IDs vs. Age, Cycle 3000001.
All �rst-gen members have now died; the oldest members of the
population are aged around 850000.

individuals get younger and younger (this was observed in
multiple tests). There are (at least) two possible interpreta-
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Figure 10.11: Graph of Individual IDs vs. Age, Cycle 6000001.
The oldest members are aged under 500000, while most of the
population is under 200000.

tions of this:
1. random individuals in the original population hap-

pened to be well-suited to survive, but only against
the rest of the initial population. As more and more
individuals came into the population, the advantages
possessed by these �rst-generation individuals turned
out to be nothing special; or

2. the population reallyis learning to survive better, and
over time, the entire population has developed sur-
vival mechanisms, thus giving none of the individuals
any particular advantage over the others.

The most interesting explanation would be #2. In order
to test for this possibility, a new experiment was designed:
mixing a trained population with a randomly-generated
population.

10.5.3 Trained Vs Untrained Population

The goal in this set of experiments was to test the above
hypothesis: namely, that a trained population would survive
better than an untrained population. To test this, a popu-
lation of 50 random creatures was created. Then the 25
oldest creatures from an aged population (the one that was
6 million cycles old, from �gure 10.11) were cloned into
25 members of the random population. Mating was turned
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off, and the ecosystem was simulated, allowing the crea-
tures to interact. The results were consistent across multiple
experiments: almost all of the initial deaths were from the
young/random population of creatures, while the old popu-
lation decreased far more slowly. Figure 10.12 shows the
decline in each population across time. While the general
trend of these graphs is in line with what was anticipated,
some of the artifacts are still confusing: for example, why
deaths seem to occur in clusters of 3 or 4 at a time.

Figure 10.12: Injection of 25 Trained Creatures Into a Population
of Random Creatures. As can be seen the trained creatures survive
better than the untrained ones. By the time the �rst trained
creature has died (after timestep 7000), nearly half (12 out of
25) of the untrained population has died. At timestep 14680,
80% of the trained population is still alive, while the untrained
population is down to 8% (2 survivors out of 25).

10.6 Exercises
1. Run the server (VEco.jar) and control it with a telnet

connection.
2. Run the server and main program's .jar �les (available

here[13]) and evolve a population.
3. Inject a drone into the ecosystem and explore how the

population behaves.
4. Vary karma and repeat the above.
5. Change the number of cycles per step and re-evolve.
6. Try working with different sized universes.
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7. Change the code to consume energy whether a crea-
ture is moving or not.
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Part Three - Next Steps





11. Next Steps

The experiments presented in this text represent a single
thread of exploration through the space of possible experi-
ments. The genetic approach has been used merely as a stop
gap, since the process of designing algorithms for EEXIST
is still poorly understood. Many of the design decisions that
have been made (e.g. values forDx, clipping of chemical
levels, etc.) are likely enhancing or restricting the richness
of the system. As almost all systems explored have varied
from each other only in the equations of 10 linear bias gra-
dients, the design space is certainly much larger than what
has been explored so far.

While the GA work has yielded some insights into the
capabilities of EEXIST, they do not illuminate thebounds
of the architecture. In particular, only systems that produce
very simpli�ed behaviors which score well on the chosen
metrics have been studied.

Long-term goals are dif�cult to speculate on, other than
the general notion of “understanding the nature of the sys-
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tem's behavior” and looking for natural systems that EEX-
IST somehow emulates. Shorter-term goals are easier to
enumerate, and are described below. This is not an exhaus-
tive collection; it's simply a growing list of questions and
ideas that have occurred throughout this work.

11.1 Evolving vs Learning

While the language of evolution and genetic algorithms has
been used in these experiments, it's not clear that the de-
velopment process is actually “genetic.” The underlying
structure of each individual is identical: all that is changing
is the setting of the bias at each location. This is not a fun-
damental change to e.g. the morphology of the individual; it
seems more like a change to the “wiring” (since setting the
bias basically changes the center point of an instruction's
address space).

Moreover, while a population of individuals has been
used to try out different such wirings, there's no reason
these variations can't be explored within a single individual.
Hence, it may be that the mechanisms being explored in
these experiments are more akin tolearningthan to evolu-
tion. What is needed is a way for a single individual to retain
the results of past runs, and modulate their wiring over time.
While this is somewhat a question of viewpoint, a change
from working explicitly with a population of individuals to
running all the mechanics inside a single individual likely
has consequences for both ef�ciency and �exibility.

Very recent work, performed since the time of the �rst
draft of this text, has explored this question further, and
shown that some of the behaviors discussed can be devel-
oped within a single individual, i.e., using a GA with a
population size of one. This work will need to be further
developed, and documented elsewhere.
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11.2 Input and Output

The basic model for input and output is only a �rst attempt
at allowing interactions between EEXIST and the outside
world. While the current model uses average SRC and DST
levels inside a region, there are other possibilities:

� for output, one may require thatall chemical levels
inside a region be above or below a threshold (as
opposed to the average value);

� for output, one may compare the difference between
SRC and DST to a threshold;

� for input, one might inject chemicalsonly oncerather
than continually adding or removing chemicals to
maintain the desired level.

11.3 Necessity of Bias

Adding bias gradients as the main genome variable seemed
to be a key to successful evolution. However, there were 2
other changes made alongside the switch to bias gradients:

1. the system is reset (i.e. initial chemical levels are
restored) before each test, as opposed to leaving the
system in its state following each test; and

2. experiments switched to testing systems on the entire
set of possible inputs, as opposed to (for example) a
random subset of tests.

It would be interesting to re-visit evolving using pure
chemical levels vs. bias gradients, following implementa-
tion of the above two changes. Not only might evolution
still be feasible, it's unclear if bias actually adds any new
capabilities to the system.

Here again, since the initial draft of this text, work
has been done in this area, and perfect digital logic gates
have been evolved using only chemical levels as a genetic
signature, i.e., with all bias levels set to 0. This too will
need to be explored further, and documented elsewhere.
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11.4 Uniqueness of Genomes

An open question is how a particular set of bias gradi-
ents translates into a particular behavior. As a �rst step
towards understanding this, an XOR gate was evolved 5
times, from 5 different initial (random) populations. Af-
ter 37 generations, four of the populations had evolved a
perfect individual (12800=12800), while the best individual
in the 5th population was performing at 99.91% perfection
(12788=12800).

Figure 11.1 shows the bias gradients of these 5 individ-
uals. As can be seen, there is no obvious similarity between
these con�gurations.

(a) (b)

(c) (d)

(e)

Figure 11.1: Bias Gradients for 5 XOR Con�gurations. (a)-(d)
correspond to perfect individuals; (e) corresponds to an individ-
ual performing at 99.91% perfection.

Repeating this exercise with more-complex target behav-
iors might be illuminating. At the least though, this exercise
shows that the mapping between genomes and functions is
de�nitely not injective. It would be interesting to repeat this
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over a very large number of runs (say 100 or 1000), and see
if clusters of similar bias gradients appear.

11.5 Other Models and Implementations
The chemical model is a �rst idea about how to represent
the enhanced ZBC. Other models are likely possible, and
might expose different aspects of EEXIST which are being
obscured by the SRC/DST chemical model.

Related to this is the question of implementation: how to
build (at least theoretically) a physical version of EEXIST.
The chemical model seems unlikely to be directly imple-
mentable: using chemical amounts to somehow address
distant regions of chemicals seems unnatural. Such address-
ing in an electrical implementation can perhaps be more
easily envisioned: voltage levels can be decreased along a
resistive path, and their vanishing can be used to trigger a
read or write at a remote location. Triggering at a voltage
level near 0 can be used to introduce non-zero karma. The
details of such a scheme are a topic of current research.

It is also possible that EEXIST already models some
real-world system, and it is an ongoing quest to discover
what such a system might be.

11.6 Other Areas to Explore
There are a number of other areas of EEXIST that can be
explored:

� All the current work is based on a one-dimensional
system (memory is addressed by a singleX address).
It would be interesting to work with a higher-dimensional
system. For a 2D system, one needs 4 chemicals (e.g.
SRCx, SRCy, DSTx andDSTy). Each location's mix
of SRC and DST chemicals thus speci�es an(x;y)
coordinate for the source and destination of a trans-
fer. Likewise, the bias settings would apply to each
of these 4 chemicals. Of course the address space
in which these chemicals are placed would also be
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two dimensional. All other mechanisms could stay
the same. This can obviously be extended to three
(or more) dimensions. It's unknown how (or even
if) any of these changes would affect the system's
capabilities.

� One can change the discretization (Dx andDt) as well
as the maximum and minimum values ofx.

� The current work only sets chemical levels withSRC=
DST: all variation is implemented via bias settings.
There are many more possible con�gurations by al-
lowing SRC and DST to be set independently.

� Most work has been done usingproportional �ow,
where the rate at which chemicals move from a source
location is proportional to the amount of chemicals
present at that source. An alternative isabsolute �ow,
where the �ow rate is independent of the chemical
levels (but still depends on diameter and karma). Re-
cent experiments with absolute �ow suggest that it
works as well as proportional �ow (depending on
what the absolute �ow rate is set to), which is useful
because absolute �ow may be easier to implement
than proportional �ow. More research is required into
the differences between these two mechanisms.

� In the tic tac toe work, the address space was bro-
ken into 10 regions (to match the locations of the
set of bias gradients in the genome). The system
requires 9 inputs/outputs (a-i), each of which is allo-
cated to one of the 10 regions as shown in �gure 8.1);
and the10th region ([36;40]) is used to inject initial
chemicals to start the game (since EEXIST is moving
�rst). Since all locations in the address space are used
for input and output, it seems as if, in some sense,
there's no room for computation: anytime chemicals
are moved into most anywhere in the memory (ex-
cept for[36;40]), it contributes directly to a vote for
a move in that square. While regions associated with
moves that have already been made are in some sense
“available,” it feels somehow like there isn't enough
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space for pure computation. It would be interesting
to either:

– change the genome structure to use smaller bins,
and change the input/output regions accordingly,
to allow regions of the address space to be es-
sentially unassigned; or

– increase the address space to cover, say,[0;80]
instead of[0;40], while also increasing the num-
ber of regions in the genome to (in this case)
20.

� Figure 10.12 shows the death of individuals in a
mixed population containing both trained and un-
trained individuals. It would be interesting to explore
these dynamics in a population consisting entirely of
trained (or untrained) individuals.

� The Gene and Genome class support other genetic
structures beyond simple bias gradients. These still
remain to be explored. Other modi�cations in the
genetic mechanisms that can be explored include:

– the number of genes in the genome;
– alternative mating algorithms (choosing each

gene from one parent or the other; selecting
collections of genes from one parent or the other;
taking a random mix of each parent's genes; and
so on); and

– adjusting the mutation rate.
� Theoretically, one should be able to set negative diam-

eters to effectively reverse the direction of chemical
�ow. This is relatively simple to explore, but hasn't
been studied yet.

� karma is currently �xed for the entire system, across
all time. Position-based karma, or karma which changes
over time, are additional mechanisms that can be ex-
plored. Note that early genetic experiments tended
to begin with small karma (for faster simulation),
followed by increasing karma for better evolvability.
More recent work (including the work reported in this
text) has generally setk = 5 for the duration of the
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runs.
� The address space is currently clipped at0 and40,

but a wrap-around model may be more natural.
� The current �ow model is based on pure �ow from

SRC to DST (“SD �ow”). An alternative is to view
an instructionSRC! DST as simply connecting two
locations, but not specifying a direction for �uid �ow.
Instead, chemicals �ow between connected regions
so as to move towards equilibrium, i.e. where the
chemical levels at the SRC and DST locations would
be the same (“equilibrium �ow”). This somehow
feels more natural, but is mostly unstudied.

11.7 Other Questions

Some questions about the system that remain unanswered:
� The simulation is based on a discretization of space

and time. When the transition is made from �nely-
discretized to fully continuous, does the behavior
change slightly, or is it possible that the behavior
changes in some fundamental way?

� Another open question is how many (fundamentally)
different behaviors are possible with a given genome
structure. In the current set of experiments, the genome
consists of 10 pairs of bias gradients, where a bias
gradient is basically a pair of real numbers between
0 and40 (representing, say, the bias value at the start
and end of a region). At some level, it seems like
such a simple structure would be limited in its possi-
ble behaviors. However, if the system exhibits chaos
, this limitation could be a non-issue, since even an
in�nitesimal change in one bias gradient might give
signi�cantly different behavior in the resulting sys-
tem.

� If the instructions in the system are scaled by say1=10
(e.g. SRC and DST are each divided by10); each
instruction is relocated from locationx to x=10; the
SRC and DST biases are scaled by1=10; k is divided
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by 10; and the diameter of addresses in(4;8] are set to
0; then the resulting system should behave the same as
the original, but will only occupy1=10th the space of
the original system. Thus systems can be scaled (and
of course the factor of10 is not special: one could, in
theory, scale the system to occupy one millionth of the
original space). Similarly, adding an offset to the bias
settings and relocating instructions by the same offset
allows a system to be moved to different regions of
the memory. Combining these,it seems it's possible
to include an in�nite number of algorithms in a �nite
region of address space. While perhaps limited in
practical applications, the theoretical implications of
this may be interesting.
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